Cargando…

Heat transfer /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ghoshdastidar, P. S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : Oxford University Press, 2012.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Aims of Studying Heat Transfer
  • 1.2. Applications of Heat Transfer
  • 1.3. Basic Modes of Heat Transfer
  • 1.4. Thermal Conductivity
  • 2. Steady-state Conduction: One-dimensional Problems
  • 2.1. Introduction
  • 2.2. Fourier's Law of Heat Conduction
  • 2.3. Fourier's Law in Cylindrical and Spherical Coordinates
  • 2.4. Heat Conduction Equation for Isotropic Materials
  • 2.4.1. Heat Conduction Equation in a Cylindrical Coordinate System
  • 2.4.2. Heat Conduction Equation in a Spherical Coordinate System
  • 2.5. Heat Conduction Equation for Anisotropic Materials
  • 2.6. Initial and Boundary Conditions
  • 2.6.1. Initial Condition
  • 2.6.2. Boundary Conditions
  • 2.7. Number of Initial and Boundary Conditions
  • 2.8. Simple One-dimensional Steady Conduction Problems
  • 2.8.1. Plane Wall
  • 2.8.2. Hollow Cylinder
  • 2.8.3.Composite Tube
  • 2.8.4. Hollow Sphere
  • 2.9. Overall Heat Transfer Coefficient
  • 2.10. Critical Thickness of Insulation
  • Note continued: 2.11. Heat Generation in a Body: Plane Wall
  • 2.12. Heat Generation in a Solid Cylinder
  • 2.13. Heat Generation in a Solid Sphere
  • 2.14. Thin Rod
  • 2.15. Thermometer Well Errors Due to Conduction
  • 2.16. Extended Surfaces: Fins
  • 2.16.1. Extended Surfaces with Constant Cross-sections
  • 2.17. Evaluation of Fin Performance
  • 2.17.1. Fin Efficiency
  • 2.17.2. Total Efficiency of a Finned Surface
  • 2.17.3. Fin Effectiveness
  • 2.17.4. Conditions Under Which the Addition of a Fin to a Solid Surface Decreases the Heat Transfer Rate
  • 2.18. Straight Fin of Triangular Profile
  • 2.19. Thermal Contact Resistance
  • 3. Steady-state Conduction: Two- and Three-dimensional Problems
  • 3.1. Introduction
  • 3.2. Steady Two-dimensional Problems in Cartesian Coordinates
  • 3.3. Summary of the Method of Separation of Variables
  • 3.4. Isotherms and Heat Flux Lines
  • 3.5. Method of Superposition
  • Note continued: 4.6. Semi-infinite Solid
  • 4.6.1. Other Surface Boundary Conditions
  • 4.6.2. Penetration Depth
  • 5. Forced Convection Heat Transfer
  • 5.1. Introduction
  • 5.2. Convection Boundary Layers
  • 5.2.1. Velocity (or Momentum) Boundary Layer
  • 5.2.2. Thermal Boundary Layer
  • 5.3. Nusselt Number
  • 5.4. Prandtl Number
  • 5.5. Laminar and Turbulent Flows Over a Flat Plate
  • 5.6. Energy Equation in the Thermal Boundary Layer in Laminar Flow over a Flat Plate
  • 5.6.1. Importance of the Viscous Dissipation Term
  • 5.6.2. Governing Equations and Boundary Conditions
  • 5.6.3. Basic Solution Methodology
  • 5.7. Solution of the Thermal Boundary Layer on an Isothermal Flat Plate
  • 5.7.1. Exact Solution: Similarity Analysis of Pohlhausen
  • 5.7.2. Approximate Analysis: von Karman's Integral Method
  • 5.8. Procedure for Using Energy Integral Equation
  • 5.9. Application of Energy Integral Equation to the Thermal Boundary Layer over an Isothermal Flat Plate
  • Note continued: 5.9.1. Energy Integral Solution for Uniform Heat Flux (q"s = constant) at the Wall
  • 5.10. Film Temperature
  • 5.11. Relation Between Fluid Friction and Heat Transfer
  • 5.12. Turbulent Boundary Layer Over a Flat Plate
  • 5.12.1. Physical Aspects of Turbulent Boundary Layer
  • 5.12.2. Time-averaged Equations
  • 5.12.3. Eddy Diffusivities of Momentum and Heat
  • 5.12.4. Prandtl's Mixing Length Hypothesis
  • 5.12.5. Turbulent Prandtl Number
  • 5.12.6. Wall Friction
  • 5.12.7. Basic Approach in Solving Turbulent Heat Transfer on a Flat Plate
  • 5.12.8. Heat Transfer
  • 5.13. Heat Transfer in Laminar Tube Flow
  • 5.13.1. Effect of Axial Conduction in the Fluid in Laminar Tube Flow
  • 5.14. Hydrodynamic and Thermal Entry Lengths
  • 5.15. Heat Transfer in Turbulent Tube Flow
  • 5.15.1. Salient Features of Liquid Metal Heat Transfer in Turbulent Tube Flow
  • 5.16. External Flows over Cylinders, Spheres, and Banks of Tubes
  • 5.16.1. Single Cylinder in Crossflow
  • Note continued: 5.16.2. Sphere
  • 5.16.3. Bank of Tubes in Crossflow
  • 6. Natural Convection Heat Transfer
  • 6.1. Introduction
  • 6.1.1. Physical Mechanism of Natural Convection
  • 6.2. Free Convection from a Vertical Plate
  • 6.2.1. Analysis
  • 6.2.2. Governing Equations
  • 6.2.3. Non-dimensionalization
  • 6.2.4. Genesis of the Physical Meaning of Gr, Re, and Gr/Re2 from Dimensional Analysis
  • 6.3. Flow Regimes in Free Convection over a Vertical Plate
  • 6.4. Basic Solution Methodology
  • 6.4.1. Similarity Solution
  • 6.4.2. Integral Analysis
  • 6.4.3. Turbulent Processes
  • 6.5. Free Convection from Other Geometries
  • 6.5.1. Inclined Plate
  • 6.5.2. Horizontal Surfaces
  • 6.5.3. Vertical Cylinders
  • 6.5.4. Horizontal Cylinders
  • 6.5.5. Enclosed Space Between Infinite Parallel Plates
  • 6.5.6. Enclosed Space Between Vertical Parallel Plates
  • 6.6. Correlations for Free Convection over a Vertical Plate Subjected to Uniform Heat Flux
  • 6.7. Mixed Convection
  • Note continued: 7. Boiling and Condensation
  • 7.1. Boiling
  • 7.1.1. Evaporation
  • 7.1.2. Nucleate Boiling
  • 7.2. Review of Phase Change Processes of Pure Substances
  • 7.2.1.p-v-T surface
  • 7.3. Formation of Vapour Bubbles
  • 7.4. Bubble Departure Diameter and Frequency of Bubble Release
  • 7.4.1. Departure Diameter Correlations
  • 7.4.2. Frequency of Bubble Release Correlations
  • 7.5. Boiling Modes
  • 7.5.1. Saturated Pool Boiling
  • 7.5.2. Boiling Curve
  • 7.5.3. Modes of Pool Boiling
  • 7.5.4. Importance of Critical Heat Flux
  • 7.5.5. Tw versus q"w Curve
  • 7.6. Heat Transfer Mechanism in Nucleate Boiling: Rohsenow's Model and its Basis
  • 7.7. Empirical Correlations and Application Equations
  • 7.7.1. Correlation of Rohsenow in the Nucleate Pool Boiling Regime
  • 7.7.2. Critical Heat Flux for Nucleate Pool Boiling
  • 7.8. Heat Transfer in the Vicinity of Ambient Pressure
  • 7.9. Minimum Heat-flux Expression
  • 7.10. Film Boiling Correlations
  • 7.11. Condensation
  • Note continued: 7.11.1. Laminar Film Condensation on a Vertical Plate
  • 7.11.2. Laminar Film Condensation on Inclined Plates
  • 7.11.3. Laminar Film Condensation on the Inner or Outer Surface of a Vertical Tube
  • 7.12. Turbulent Film Condensation
  • 7.13. Sub-cooling of Condensate
  • 7.14. Superheating of the Vapour
  • 7.15. Laminar Film Condensation on Horizontal Tubes (Nusselt's Approach)
  • 7.16. Vertical Tier of n Horizontal Tubes
  • 7.16.1. Chen's Modification of Nusselt's Correlation
  • 7.17. Staggered Tube Arrangement
  • 7.18. Flow Boiling
  • 7.18.1. Introduction
  • 7.18.2. Definitions of Some Basic Terms
  • 7.19. Calculation of x* in a Heated Channel
  • 7.19.1. Cases of Failure of Eq. (7.89)
  • 7.19.2. Applicability of Eq. (7.89)
  • 7.20. Pressure Drop in a Two-phase Flow
  • 7.21. Determination of Frictional Pressure Drop: Lockhart and Martinelli Approach
  • 7.21.1. Homogeneous Model
  • 7.21.2. Heterogeneous Model
  • 7.22. Various Heat Transfer Regimes in a Two-phase Flow
  • Note continued: 7.23. Methodology of Calculation of the Heat Transfer Coefficient in a Two-phase Flow: The Chen Approach
  • 7.24. Critical Boiling States
  • 7.25. Condensation of Flowing Vapour in Tubes
  • 7.26. Heat Pipe
  • 8. Radiation Heat Transfer
  • 8.1. Introduction
  • 8.2. Physical Mechanism of Energy Transport in Thermal Radiation
  • 8.3. Laws of Radiation
  • 8.3.1. Planck's Law
  • 8.3.2. Wien's Displacement Law
  • 8.3.3. Stefan-Boltzmann Law
  • 8.3.4. Explanation for Change in Colour of a Body when it is Heated
  • 8.4. Intensity of Radiation
  • 8.4.1. Relation to Irradiation
  • 8.4.2. Relation to Radiosity
  • 8.4.3. Relation between Radiosity and Irradiation
  • 8.5. Diffuse Surface and Specular Surface
  • 8.6. Absorptivity, Reflectivity, and Transmissivity
  • 8.7. Black Body Radiation
  • 8.8. Radiation Characteristics of Non-black Surfaces: Monochromatic and Total Emissivity
  • 8.8.1. Monochromatic and Total Absorptivities
  • 8.9. Kirchhoff's Law
  • Note continued: 8.9.1. Restrictions of Kirchhoff's Law
  • 8.9.2. Note on a Gray Body
  • 8.10. View Factor
  • 8.10.1. View Factor Integral
  • 8.10.2. View Factor Relations
  • 8.10.3. View Factor Algebra
  • 8.10.4. Hottel's Crossed-strings Method
  • 8.11. Radiation Exchange in a Black Enclosure
  • 8.12. Radiation Exchange in a Gray Enclosure
  • 8.13. Electric Circuit Analogy
  • 8.14. Three-surface Enclosure
  • 8.15. Gebhart's Absorption Factor Method
  • 8.16. Two-surface Enclosure
  • 8.17. Infinite Parallel Planes
  • 8.18. Radiation Shields
  • 8.19. Radiation Heat Transfer Coefficient
  • 8.20. Gas Radiation
  • 8.20.1. Participating Medium
  • 8.20.2. Beer's Law
  • 8.20.3. Mean Beam Length
  • 8.20.4. Heat Exchange Between Gas Volume and Black Enclosure
  • 8.20.5. Heat Exchange Between Two Black Parallel Plates
  • 8.20.6. Heat Exchange Between Surfaces in a Black N-sided Enclosure
  • 8.20.7. Heat Exchange Between Gas Volume and Gray Enclosure
  • 8.21. Solar Radiation
  • 8.22. Greenhouse Effect
  • Note continued: 10.2. Introduction to Finite-difference, Numerical Errors, and Accuracy
  • 10.2.1. Central-, Forward-, and Backward-difference Expressions for a Uniform Grid
  • 10.2.2. Numerical Errors
  • 10.2.3. Accuracy of a Solution: Optimum Step Size
  • 10.2.4. Method of Choosing Optimum Step Size: Grid Independence Test
  • 10.3. Numerical Methods for Conduction Heat Transfer
  • 10.3.1. Numerical Methods for a One-dimensional Steady-state Problem
  • 10.3.2. Numerical Methods for Two-dimensional Steady-state Problem
  • 10.4. Transient One-dimensional Problems
  • 10.4.1. Methods of Solution
  • 10.4.2. Stability: Numerically Induced Oscillations
  • 10.4.3. Stability Limit of the Euler Method from Physical Standpoint
  • 10.5. Two-dimensional Transient Heat Conduction Problems
  • 10.5.1. Alternating Direction Implicit Method
  • 10.6. Problems in Cylindrical Geometry: Handling of the Condition at the Centre
  • 10.6.1. Axisymmetric Problems
  • 10.6.2. Non-axisymmetric Problems
  • Note continued: 10.7. One-dimensional Transient Heat Conduction in Composite Media
  • 10.8. Treatment of Non-linearities in Heat Conduction
  • 10.8.1. Non-linear Governing Differential Equation: Variable Thermal Conductivity
  • 10.8.2. Non-linear Boundary Conditions
  • 10.9. Handling of Irregular Geometry in Heat Conduction
  • 10.10. Application of Computational Heat Transfer to Cryostrgery
  • 10.10.1. Mathematical Model
  • 10.10.2. Finite-difference Formulation
  • 10.10.3. Solution Algorithm
  • 10.10.4. Experimental Verification of the Technique
  • 10.10.5. Concluding Remarks
  • 11. Mass Transfer
  • 11.1. Introduction
  • 11.2. Definitions of Concentrations, Velocities, and Mass Fluxes
  • 11.3. Fick's Law of Diffusion
  • 11.4. Analogy Between Heat Transfer and Mass Transfer
  • 11.5. Derivation of Various Forms of the Equation of Continuity for a Binary Mixture
  • 11.6. Analogy Between Special Forms of the Heat Conduction and Mass Diffusion Equations
  • Note continued: 11.7. Boundary Conditions in Mass Transfer
  • 11.8. One-dimensional Steady Diffusion through a Stationary Medium
  • 11.9. Forced Convection with Mass Transfer over a Flat Plate Laminar Boundary Layer
  • 11.9.1. Exact Solution
  • 11.9.2. Concentration Boundary Layer and Mass Transfer Coefficient
  • 11.10. Evaporative Cooling
  • 11.11. Relative Humidity
  • 11.11.1. Effects of Relative Humidity
  • 12. Solidification and Melting
  • 12.1. Introduction
  • 12.2. Exact Solutions of Solidification: One-dimensional Analysis
  • 12.2.1. Problem of Stefan
  • 12.2.2. Neumann Problem
  • 12.3. Melting of a Solid: One-dimensional Analysis
  • Appendices
  • Appendix A1 Thermophysical Properties of Matter
  • Appendix A2 Numerical Values of Bessel Functions
  • Appendix A3 Laplace Transforms
  • Appendix A4 Numerical Values of Error Function
  • Appendix A5 Radiation View Factor Charts
  • Appendix A6 Binary Diffusivities of Various Substances at 1 atm
  • Note continued: Appendix A7 Thermophysical Properties of Water at Atmospheric Pressure
  • Appendix A8 Solutions of finite-difference Problems in Heat Conduction Using C.