Cargando…

Handbook of oil spill science and technology /

Provides a scientific basis for the cleanup and for the assessment of oil spillsEnables Non-scientific officers to understand the science they use on a daily basisMulti-disciplinary approach covering fields as diverse as biology, microbiology, chemistry, physics, oceanography and toxicologyCovers th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Fingas, Mervin F. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine-generated contents note: pt. I RISK ANALYSIS
  • 1. Risk Analysis and Prevention / Dagmar Schmidt Etkin
  • 1.1. Introduction
  • 1.2. Executive Summary
  • 1.3. Oil Spill Risk Analysis
  • 1.3.1. Defining "Oil Spill Risk"
  • 1.3.2. Factors That Determine the Probability of Spill Occurrence
  • 1.3.3. Probability Distributions of Spill Volume
  • 1.3.4. Determining the Probable Locations and Timing of Spills
  • 1.3.5. Factors That Determine the Consequences/Impacts of a Spill
  • 1.3.6. Spill Impacts: The Effects of Spill Location Type
  • 1.3.7. Measuring Oil Spill Impacts
  • 1.3.8. Interpreting Risk for Policy-Making
  • 1.4. Overview of Oil Spill Prevention
  • 1.4.1. Basic Strategies for Spill Prevention
  • 1.4.2. Implementation of Spill Prevention Measures
  • 1.4.3. Effectiveness of Spill Prevention
  • 1.4.4. Spill Fines and Penalties as Deterrents
  • References
  • pt. II OIL PROPERTIES
  • 2. Oil Physical Properties: Measurement and Correlation / Bruce P. Hollebone
  • 2.1. Introduction
  • 2.2. Bulk Properties of Crude Oil and Fuel Products
  • 2.2.1. Density and API Gravity
  • 2.2.2. Dynamic Viscosity
  • 2.2.3. Surface and Interfacial Tensions
  • 2.2.4. Flash Point
  • 2.2.5. Pour Point
  • 2.2.6. Sulphur Content
  • 2.2.7. Water Content
  • 2.2.8. Evaluation of the Stability of Emulsions Formed from Brine and Oils and Oil Products
  • 2.2.9. Evaluation of the Effectiveness of Dispersants on an Oil
  • 2.2.10. Adhesion
  • 2.3. Hydrocarbon Groups
  • 2.3.1. Saturates
  • 2.3.2. Aromatics
  • 2.3.3. Resins
  • 2.3.4. Asphaltenes
  • 2.4. Quality Assurance and Control
  • 2.5. Effects of Evaporative Weathering on Oil Bulk Properties
  • 2.5.1. Weathering
  • 2.5.2. Preparing Evaporated (Weathered) Samples of Oils
  • 2.5.3. Quantifying Equation(s) for Predicting Evaporation
  • References
  • pt. III OIL COMPOSITION AND PROPERTIES
  • 3. Introduction to Oil Chemistry and Properties / Merv Fingas
  • 3.1. Introduction
  • 3.2. The Composition of Oil
  • 3.2.1. SARA
  • 3.2.2. Sulphur Compounds
  • 3.2.3. Oxygen Compounds
  • 3.2.4. Nitrogen Compounds
  • 3.2.5. Metals
  • 3.2.6. Resins
  • 3.2.7. Asphaltenes
  • 3.3. Properties of Oil
  • References
  • 4. Vegetable Oil Spills: Oil Properties and Behaviour / Merv Fingas
  • 4.1. Introduction
  • 4.2. The Oils
  • 4.3. Historical Spills
  • 4.4. Aquatic Toxicity
  • 4.5. Properties of the Oils
  • 4.6. Behaviour in the Environment
  • 4.7. Oxidation, Biodegradation, and Polymerization
  • 4.8. Spill Countermeasures
  • 4.9. Biofuels
  • 4.10. Conclusions
  • References
  • pt. IV OIL ANALYSIS
  • 5. Chromatographic Fingerprinting Analysis of Crude Oils and Petroleum Products / Mike Landriault
  • 5.1. Introduction
  • 5.1.1. Crude Oils and Refined Petroleum Products
  • 5.1.2. Chemical Components of Petroleum
  • 5.2. Introduction to Oil Analysis Techniques
  • 5.2.1. GC
  • 5.2.2. GC with Mass Spectrometry
  • 5.2.3. Ancillary Oil Fingerprinting Techniques
  • 5.3. Methodology of Oil Fingerprinting Analysis
  • 5.3.1. Oil Sample Preparation and Separation
  • 5.3.2. Identification and Quantitation of Target Petroleum Hydrocarbons
  • 5.3.3. Oil Type Screening by GC-FID
  • 5.3.4. Aliphatic Hydrocarbons in Petroleum
  • 5.3.5. Aromatic Hydrocarbons in Petroleum
  • 5.4. Weathering Effect on Oil Chemical Composition
  • 5.4.1. Evaporation Weathering
  • 5.4.2. Biodegradation Weathering
  • 5.4.3. Photodegradation Weathering
  • 5.4.4. Assessment of Mass Loss during Weathering
  • 5.5. Diagnostic Ratios of Target Hydrocarbons
  • 5.5.1. Molecular Diagnostic Ratios for Oil Identification
  • 5.5.2. Selection of Diagnostic Ratios
  • 5.6. Forensic Oil Spill Identification: A Case Study
  • 5.6.1. Product Type Screening and Determination of Hydrocarbon Groups
  • 5.6.2. Determination of Oil-Characteristic Alkylated PAHs and Biomarkers
  • 5.6.3. Comparison of Diagnostic Ratios
  • 5.6.4. Weathering Check
  • 5.6.5. Results of Match between Spilled Oils and Candidate Sources
  • References
  • 6. Oil Spill Identification / Gerhard Dahlmann
  • 6.1. Introduction
  • 6.2. Sampling
  • 6.2.1. Thick Oil Layers and Tar Balls
  • 6.2.2. Sampling of Thin Oil Films (Sheens or Slicks)
  • 6.2.3. Taking Oil Samples on Beaches and from Oiled Animals
  • 6.2.4. Sampling on Board Vessels
  • 6.3. Sample Handling in the Laboratory
  • 6.4. Analysis
  • 6.4.1. Characterization by GC-FID: Level 1
  • 6.4.2. Characterization by GC-MS: Level 2
  • 6.5. Conclusions
  • References
  • pt. V OIL BEHAVIOUR
  • 7. Oil and Petroleum Evaporation / Merv Fingas
  • 7.1. Introduction
  • 7.2. Review of Historical Concepts
  • 7.3. Development of New Diffusion-Regulated Models
  • 7.3.1. Wind Experiments
  • 7.3.2. Variation with Area
  • 7.3.3. Variation with Mass
  • 7.3.4. Evaporation of Pure Hydrocarbons
  • 7.3.5. Saturation Concentration
  • 7.3.6. Development of Generic Equations Using Distillation Data
  • 7.4. Complexities to the Diffusion-Regulated Model
  • 7.4.1. Oil Thickness
  • 7.4.2. The Bottle Effect
  • 7.4.3. Skinning
  • 7.4.4. Jumps from the 0-Wind Values
  • 7.5. Use of Evaporation Equations in Spill Models
  • 7.6. Volatilization
  • 7.7. Measurement of Evaporation
  • 7.8. Summary
  • References
  • 8. Water-in-Oil Emulsions: Formation and Prediction / Ben Fieldhouse
  • 8.1. Introduction
  • 8.2. Types of Emulsions
  • 8.3. Stability Indices
  • 8.4. Formation of Emulsions
  • 8.4.1. The Role of Asphaltenes
  • 8.4.2. The Role of Resins and Other Components
  • 8.4.3. Methods to Study Emulsions
  • 8.4.4. The Overall Theory of Emulsion Formation
  • 8.4.5. The Role of Weathering
  • 8.5. Modelling the Formation of Water-in-Oil Emulsions
  • 8.5.1. Older Models
  • 8.5.2. New Models
  • 8.5.3. Development of an Emulsion Kinetics Estimator
  • 8.5.4. Model Certainty
  • 8.6. Conclusions
  • References
  • 9. Oil Behaviour in Ice-Infested Waters / Bruce P. Hollebone
  • 9.1. Introduction
  • 9.2. Spreading on Ice
  • 9.3. Spreading on or in Snow
  • 9.4. Spreading under Ice
  • 9.4.1. Water Stripping Velocity under Ice
  • 9.5. Spreading on Water with Ice Present
  • 9.6. The Effect of Gas on Oil-under-Ice Spreading
  • 9.7. Movement through Ice
  • 9.8. Oil in Leads
  • 9.9. Absorption to Snow and Ice
  • 9.10. Containment on Ice
  • 9.11. Heating Effect of Oil on the Surface of Ice
  • 9.12. Oil under Multiyear Ice
  • 9.13. Oil in Pack Ice
  • 9.14. Growth of Ice on Shorelines and Effect on Oil Retention
  • 9.15. Effect of Oil on Ice Properties
  • 9.16. Concluding Remarks
  • References
  • pt. VI MODELLING
  • 10. Introduction to Spill Modelling / Merv Fingas
  • 10.1. Introduction
  • 10.2. An Overview of Weathering
  • 10.3. Evaporation
  • 10.4. Water Uptake and Emulsification
  • 10.4.1. Regression Model Calculation
  • 10.5. Natural Dispersion
  • 10.6. Summary of Natural Dispersion
  • 10.7. Other Processes
  • 10.7.1. Dissolution
  • 10.7.2. Photooxidation
  • 10.7.3. Sedimentation, Adhesion to Surfaces, and Oil-Fines Interaction
  • 10.7.4. Biodegradation
  • 10.7.5. Sinking and Overwashing
  • 10.7.6. Formation of Tar Balls
  • 10.8. Movement of Oil and Oil Spill Modelling
  • 10.8.1. Spreading
  • 10.8.2. Movement of Oil Slicks
  • 10.9. Spill Modelling
  • References
  • 11. Oceanographic and Meteorological Effects on Spilled Oil / William J. Lehr
  • List of Symbols
  • 11.1. Introduction
  • 11.2. Chapter Scope
  • 11.3. Atmospheric Boundary Layer
  • 11.4. Water Currents
  • 11.5. Waves
  • 11.6. Sea Spray
  • 11.7. Langmuir Cells
  • 11.8. Oil Transport
  • 11.9. Areas of Active Research
  • 11.9.1. Ice
  • 11.9.2. Lagrangian Coherent Structures
  • 11.9.3. Sub-surface Well Blowouts
  • References
  • pt. VII DETECTION, TRACKING, AND REMOTE-SENSING
  • 12. Oil Spill Remote-Sensing / Carl E.
  • Brown
  • 12.1. Introduction
  • 12.2. Atmospheric Properties
  • 12.3. Oil Interaction with Light and Electronic Waves
  • 12.4. Visible Indications of Oil
  • 12.5. Optical Sensors
  • 12.5.1. Visible
  • 12.5.2. IR
  • 12.5.3. Near IR
  • 12.5.4. UV
  • 12.6. Laser Fluorosensors
  • 12.7. Microwave Sensors
  • 12.7.1. Radiometers
  • 12.7.2. Radar
  • 12.7.3. Microwave Scatterometers
  • 12.7.4. Surface-Wave Radars
  • 12.7.5. Interferometric Radar
  • 12.8. Slick Thickness Determination
  • 12.8.1. Visual Thickness Indications
  • 12.8.2. Slick Thickness Relationships in Remote Sensors
  • 12.8.3. Specific Thickness Sensors
  • 12.9. Integrated Airborne Sensor Systems
  • 12.10. Satellite Remote Sensing
  • 12.10.1. Optical
  • 12.10.2. Radar
  • 12.11. Oil-Under-Ice Detection
  • 12.12. Underwater Detection and Tracking
  • 12.13. Small Remote-Controlled Aircraft
  • 12.14. Real-Time Displays and Printers
  • 12.15. Routine Surveillance
  • 12.16. Future Trends
  • 12.17. Recommendations
  • References
  • 13. Detection, Tracking, and Remote-Sensing: Satellites and Image Processing (Spaceborne Oil Spill Detection) / Guido Ferraro
  • 13.1. Introduction
  • 13.2. Oil Spills Detection by Satellite
  • 13.2.1. Optical Remote-Sensing
  • 13.2.2. Microwave Remote-Sensing
  • 13.3. From Research to Operational Services
  • 13.3.1. Historical attempts
  • 13.3.2. Operational Oil Spill Detection
  • 13.3.3. Oil Seepage Detection Aspects
  • 13.4. Ancillary Data
  • 13.4.1. Detection Capability
  • 13.4.2. Risk of Pollution
  • 13.4.3. Ship Detection (AIS, LRIT, VMS, Satellite AIS)
  • 13.5. Summary and Conclusions
  • References.
  • Note continued: 14. Detection of Oil in, with, and under Ice and Snow / Carl E. Brown
  • 14.1. Introduction
  • 14.2. Overview of Detection of Oil in or under Ice and Snow
  • 14.2.1. Optical Methods
  • 14.2.2. Acoustic Methods
  • 14.2.3. Radio-Frequency Methods
  • 14.2.4. Ground-Penetrating Radar
  • 14.2.5. UHF Radiometer
  • 14.2.6. Nuclear Techniques
  • 14.2.7. Gas Sniffing and Leak Detection
  • 14.2.8. Nuclear Magnetic Resonance
  • 14.3. Detection of Surface Oil with Ice: Conventional Techniques
  • 14.4. Conclusions
  • References
  • pt. VIII OIL SPILLS ON LAND
  • 15. Bioremediation of Oil Spills on Land / Ania C. Ulrich
  • 15.1. Introduction
  • 15.2. Brief Overview of Bioremediation Techniques for Land Oil Spills
  • 15.2.1. In Situ versus Ex Situ
  • 15.2.2. Biostimulation versus Bioaugmentation
  • 15.3. Key Organisms Involved in Biodegradation of Oil Spills on Land
  • 15.3.1. Communities versus Isolates
  • 15.4. Environmental Factors Affecting Bioremediation
  • 15.4.1. Temperature
  • 15.4.2. pH
  • 15.4.3. Salinity
  • 15.4.4. Nutrients
  • 15.4.5. Moisture
  • 15.4.6. Redox Environment
  • 15.4.7. Soil Type
  • 15.5. In Situ Bioremediation Strategies
  • 15.5.1. Bioventing
  • 15.5.2. Enhanced Bioremediation
  • 15.5.3. Monitored Natural Attenuation
  • 15.6. Ex Situ Land Treatment Techniques
  • 15.6.1. Land-farming and Land Treatment
  • 15.6.2. Biopiles
  • 15.6.3. Organic Amendments
  • 15.7. Bioaugmentation Strategies
  • 15.7.1. Key Bacteria Used in Bioaugmentation
  • 15.7.2. Role of Other Organisms
  • 15.8. Biostimulation Strategies
  • 15.8.1. Biosurfactants
  • References
  • 16. Microbe-Assisted Phytoremediation of Petroleum Impacted Soil: A Scientifically-Proven Green Technology / Bruce M. Greenberg
  • 16.1. Introduction
  • 16.1.1. Overview of Phytoremediation
  • 16.1.2. Developing Microbe-Assisted Phytoremediation as a Remedial Strategy for PHC
  • 16.1.3. Benefits and Challenges of Phytoremediation and Microbe-Assisted Phytoremediation
  • 16.1.4. Successful Field Tests of Phytoremediation
  • 16.2. PGPR-Enhanced Phytoremediation System(s)
  • 16.2.1. Development, Proof, and Full-Scale Application of PEPS
  • 16.2.2. Keys to the Success of PEPS
  • 16.3. Case Studies of Full-Scale Petroleum Phytoremediation
  • 16.3.1. Case Study #1: Edson, Alberta
  • 16.3.2. Case Study #2: Peace River, Alberta
  • 16.3.3. Case Study #3: Hinton, Alberta
  • 16.3.4. Case Study #4: Dawson Creek, British Columbia
  • 16.3.5. Overall Conclusions from Case Studies
  • 16.4. Achieving Regulatory Criteria
  • 16.4.1. Optimizing PHC Analytical Protocols for Removal of BOC
  • 16.4.2. Plant Toxicity Testing
  • 16.5. Conclusions
  • References
  • pt. IX EFFECTS OF OIL
  • 17. Overview of Efforts to Document and Reduce Impacts of Oil Spills on Seabirds / Florina S. Tseng
  • 17.1. Introduction
  • 17.2. Vulnerability
  • 17.3. Effect of Oiling on Individual Birds
  • 17.3.1. External Oil Effects
  • 17.3.2. Internal Oil Effects
  • 17.3.3. Oil Effects on Reproduction
  • 17.4. Rehabilitation and Veterinary Care
  • 17.4.1. Key Considerations in Care
  • 17.4.2. Release Rates
  • 17.4.3. Post-Release Survival and Reproduction
  • 17.4.4. Rehabilitation Process
  • 17.5. Estimating Mortality
  • 17.5.1. Oiled Birds at Sea
  • 17.5.2. Oiled Birds on Land
  • 17.5.3. Cause of Death and Background Deposition
  • 17.6. Long-Term Impacts
  • 17.7. Restoration
  • 17.7.1. Apex Houston Barge Oil Spill, Central California
  • 17.7.2. American Trader Oil Spill, Southern California
  • References
  • 18. Overview of Effects of Oil Spills on Marine Mammals / Terrie M. Williams
  • 18.1. Introduction
  • 18.1.1. Sea Otters
  • 18.1.2. Seals and Sea Lions
  • 18.1.3. Sea Cows
  • 18.1.4. Polar Bears
  • 18.1.5. Whales, Dolphins, and Porpoises
  • 18.2. Sea Otters
  • 18.2.1. External Exposure
  • 18.2.2. Internal Exposure
  • 18.2.3. Long-Term Effects
  • 18.3. Seals and Sea Lions
  • 18.3.1. Direct Effects
  • 18.3.2. Vulnerability and Risk
  • 18.4. Sea Cows
  • 18.4.1. Direct Effects
  • 18.4.2. Indirect Effects
  • 18.5. Polar Bears
  • 18.5.1. Direct and Indirect Effects
  • 18.5.2. Vulnerability and Risk
  • 18.6. Whales, Dolphins, and Porpoises
  • 18.6.1. Direct Effects
  • 18.6.2. Vulnerability and Risk
  • References
  • 19. Oil Spill Impact and Recovery of Coastal Marsh Vegetation / Qianxin Lin
  • 19.1. Introduction
  • 19.2. Toxicity and Impact as a Function of Oil Type and Oil Weathering Degree
  • 19.3. Sensitivity to Oil Varies by Plant Species
  • 19.4. Effects of Oil Exposure Modes on Severity of Oil Impacts
  • 19.5. Effects of Oil Spill Cleanup Procedures on Marsh Recovery
  • References
  • pt. X NATURAL DISPERSION
  • 20. A Review of Natural Dispersion Models / Merv Fingas
  • 20.1. Introduction
  • 20.2. The Mackay Approach
  • 20.3. The Audunson Approach
  • 20.4. The Delvigne Approach
  • 20.5. Residence in the Water Column
  • 20.6. Comparison of the Models
  • 20.7. Conclusions
  • References
  • pt. XI COLD REGION SPILLS
  • 21. Arctic and Antarctic Spills / Andrew G. Klein
  • 21.1. Introduction
  • 21.1.1. Occurrences
  • 21.1.2. Scale of the Problem
  • 21.1.3. Environments
  • 21.1.4. Regulatory Framework
  • 21.2. Terrestrial Spills
  • 21.2.1. Petroleum Transport and Fate
  • 21.2.2. Mitigation and Countermeasures
  • 21.2.3. Remediation and Lessons Learned
  • 21.3. Marine Spills
  • 21.3.1. Petroleum Transport and Fate
  • 21.3.2. Mitigation and Countermeasures
  • 21.3.3. Remediation and Lessons Learned
  • 21.4. Policy
  • References
  • pt. XII CASE STUDIES
  • 22. The Prestige Oil Spill / Lucia Vinas
  • 22.1. Introduction
  • 22.2. The Ocean and Coastal Dynamics in the NW Iberia and their Influence on the Spill
  • 22.2.1. Oceanographic Conditions
  • 22.2.2. Oil Spill Forecasting
  • 22.3. Oil Monitoring and Fate
  • 22.3.1. Fuel Oil Composition
  • 22.3.2. Fuel at Sea
  • 22.3.3. Spatial and Temporal Distribution in Seawater
  • 22.3.4. Continental Shelf Contamination
  • 22.3.5. Accumulation in Biota
  • 22.4. The Assessment of Effects
  • 22.4.1. Bioassays under Laboratory Conditions
  • 22.4.2. Field Studies
  • 22.5. Environmental Restoration
  • 22.5.1. Oil Recovery at Sea
  • 22.5.2. Coastal Contamination and Cleanup Efforts
  • 22.5.3. Natural Attenuation Processes
  • 22.6. Conclusion
  • References
  • 23. The Grounding of the Bahia Paraiso, Arthur Harbor, Antarctica: Distribution and Fate of Oil Spill-Related Hydrocarbons / Andrew G. Klein
  • 23.1. Introduction and Background
  • 23.2. Environmental Sampling
  • 23.2.1. Surface Slicks and Water Column
  • 23.2.2. Intertidal Macroalgae
  • 23.2.3. Intertidal Beaches
  • 23.2.4. Intertidal Limpets
  • 23.2.5. Subtidal Sediments
  • 23.2.6. Impacts on Other Wildlife
  • 23.3. Conclusions
  • References
  • 24. Tasman Spirit Oil Spill at Karachi Coast, Pakistan / Alia Bano Munshi
  • 24.1. Introduction
  • 24.2. Immediate Response to the Impact: Actions and Remediation
  • 24.2.1. Oil Recovery and Coast Cleaning
  • 24.2.2. Oil Spill Monitoring
  • 24.2.3. Socioeconomic Impact and Damage to Coastal Marine Life Damage
  • 24.2.4. Human Health Impacts
  • 24.3. The DDWP Project by Ministry of Science and Technology (MoST)
  • 24.4. Hydrodynamics and Meteorological Data
  • 24.4.1. Oceanographic Conditions
  • 24.4.2. The Assessment of Oil Transport: Numerical Models
  • 24.5. Oil Monitoring and Fate
  • 24.5.1. Oil Composition
  • 24.5.2. Spatial and Temporal Distribution in Seawater
  • 24.5.3. Biota Affected by Oil Pollution
  • 24.5.4. Oil Content of Sediment
  • 24.6. Effects of Oil Impact at the Community Level
  • 24.6.1. The Effects on the Benthic System
  • 24.6.2. The Effects on the Pelagic System
  • 24.7. Bioremediation/Natural Attenuation Processes
  • 24.8. Conclusions
  • References
  • pt. XIII APPENDICES
  • Appendix A The Oil Properties Data Appendix / Bruce P. Hollebone
  • Appendix B Conversions / Merv Fingas
  • Appendix C Ice Nomenclature / Merv Fingas.