Cargando…

Power system small signal stability analysis and control /

Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid techn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mondal, Debasish, 1974-, Chakrabarti, Abhijit (Autor), Sengupta, Aparajita (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; Waltham Mass. : Academic Press, 2014.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Power System Small Signal Stability Analysis and Control; Copyright; Dedication; Contents; Acknowledgments; Author Biography; Preface; Chapter 1: Concepts of Small-Signal Stability; 1.1. Introduction; 1.2. Swing equation; 1.3. Nature of oscillations; 1.4. Modes of oscillations and its study procedure; 1.5. Synchronizing torque and damping torque; 1.6. Small-signal oscillations in a synchronous generator connected to an infinite bus; 1.7. An illustration; Solution; Exercises; References; Chapter 2: Fundamental Models of Synchronous Machine; 2.1. Introduction.
  • 2.2. Synchronous machine dynamic model in the a-b-c reference frame2.3. Park's transformation and dynamic model in the d-q-o reference frame; 2.4. Per unit (PU) representation and scaling [2]; 2.5. Physical significance of PU system; 2.6. Stator flux-current relationships; 2.7. Rotor dynamic equations; 2.8. Reduced order model; 2.9. Equivalent circuit of the stator algebraic equations; 2.10. Synchronous machine exciter; 2.10.1. IEEE Type I exciter; 2.10.2. Static exciter; Exercises; References; Chapter 3: Models of Power Network and Relevant Power Equipments; 3.1. Introduction.
  • 3.2. Simple model of a synchronous generator3.3. Steady-State Modeling of Synchronous Machine (Analytical Aspects) [1]; 3.4. Governor model [2]; 3.5. Turbine model [2]; 3.6. Power network model; 3.7. Modeling of load; 3.8. Power system stabilizer; 3.9. Model of FACTS devices; 3.9.1. Static Var compensator; 3.9.2. Static synchronous compensator; 3.9.3. Thyristor-controlled series compensator; 3.9.4. Static synchronous series compensator; 3.9.5. Unified power flow controller; Exercises; References; Chapter 4: Small-Signal Stability Analysis in SMIB Power System; 4.1. Introduction.
  • 4.2. Heffron-Philips model of SMIB power system4.2.1. Fundamental equations; 4.2.2. Linearization process and state-space model; 4.2.3. Derivation of K constants: K1, K2, K3, K4, K5, and K6; 4.3. Small-Signal stability analysis using state-space model and block diagram; 4.4. An illustration; Solution; 4.5. Effect of Generator Field; Solution; 4.6. Effect of excitation system; 4.6.1. Effect of excitation system in torque-angle loop; 4.6.2. Calculation of steady-state synchronizing and damping torque; 4.6.3. Synchronizing and damping torque at rotor oscillation frequency; 4.7. An illustration.
  • SolutionExercises; References; Chapter 5: Small-Signal Stability Analysis in Multimachine System; 5.1. Introduction; 5.2. Multimachine small-Signal model; 5.2.1. Two-axis model of multimachine system; 5.2.2. Linearization process and multimachine state-space model; 5.2.3. Reduced-order flux-decay model; 5.3. Computation of initial conditions of the state variables; 5.3.1. An illustration; 5.4. Identification of electromechanical swing modes; 5.4.1. Participation factor analysis; Solution; 5.4.2. Swing mode and participation ratio; 5.5. An illustration: A test case; Exercises; References.