Understanding smart sensors /
Now in its third edition, Understanding Smart Sensors is the most complete, up-to-date, and authoritative summary of the latest applications and developments impacting smart sensors in a single volume. This thoroughly expanded and revised edition of an Artech bestseller contains a wealth of new mate...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boston :
Artech House,
[2013]
|
Edición: | Third edition. |
Colección: | Artech House integrated microsystems series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Smart Sensor Basics
- 1.1. Introduction
- 1.2. Mechanical-Electronic Transitions in Sensing
- 1.3. Nature of Sensors
- 1.4. Integration of Micromachining and Microelectronics
- 1.5. Application Example
- 1.6. Summary
- References
- Selected Bibliography
- ch. 2 Micromachining
- 2.1. Introduction
- 2.2. Bulk Micromachining
- 2.3. Wafer Bonding
- 2.3.1. Silicon-on-Silicon Bonding
- 2.3.2. Silicon-on-Glass (Anodic) Bonding
- 2.3.3. Silicon Fusion Bonding
- 2.3.4. Wafer Bonding for More Complex Structures and Adding ICs
- 2.4. Surface Micromachining
- 2.4.1. Squeeze-Film Damping
- 2.4.2. Stiction
- 2.4.3. Particulate Control
- 2.4.4.Combinations of Surface and Bulk Micromachining
- 2.5. Other Micromachining Techniques
- 2.5.1. The LIGA Process
- 2.5.2. Dry Etching Processes
- 2.5.3. Micromilling
- 2.5.4. Lasers in Micromachining
- 2.6.Combining MEMS with IC Fabrication
- 2.7. Other Micromachined Materials
- 2.7.1. Diamond as an Alternate Sensor Material
- 2.7.2. Metal Oxides and Piezoelectric Sensing
- 2.7.3. Films on Microstructures
- 2.7.4. Micromachining Metal Structures
- 2.7.5. Carbon Nanotube MEMS
- 2.8. MEMS Foundry Services and Software Tools
- 2.9. Application Example
- 2.10. Summary
- References
- Selected Bibliography
- ch. 3 The Nature of Semiconductor Sensor Output
- 3.1. Introduction
- 3.2. Sensor Output Characteristics
- 3.2.1. Wheatstone Bridge
- 3.2.2. Piezoresistivity in Silicon
- 3.2.3. Semiconductor Sensor Definitions
- 3.2.4. Static Versus Dynamic Operation
- 3.3. Other Sensing Technologies
- 3.3.1. Capacitive Sensing
- 3.3.2. Piezoelectric Sensing
- 3.3.3. The Hall-Effect
- 3.3.4. Chemical Sensors
- 3.3.5. Improving Sensor Characteristics
- 3.4. Digital Output Sensors
- 3.4.1. Incremental Optical Encoders
- 3.4.2. Digital Techniques
- 3.5. Noise/Interference Aspects
- 3.6. Low Power, Low Voltage Sensors
- 3.6.1. Impedance
- 3.7. Analysis of Sensitivity Improvement
- 3.7.1. Thin Diaphragm
- 3.7.2. Increase Diaphragm Area
- 3.7.3. Improve Topology
- 3.8. Application Example
- 3.9. Summary
- References
- ch. 4 Getting Sensor Information Into the Microcontroller
- 4.1. Introduction
- 4.2. Amplification and Signal Conditioning
- 4.2.1. Instrumentation Amplifiers
- 4.2.2. Sleep-Mode Circuitry for Reducing Power
- 4.2.3. Rail to Rail Operational Amplifiers
- 4.2.4. Switched-Capacitor Amplifier
- 4.2.5. Barometer Application Circuit
- 4.2.6.4- to 20-mA Signal Transmitter
- 4.2.7. Schmitt Trigger
- 4.3. Separate Versus Integrated Signal Conditioning
- 4.3.1. Integrated Signal Conditioning
- 4.3.2. External Signal Conditioning
- 4.4. Digital Conversion
- 4.4.1.A/D Converters
- 4.4.2. Performance of A/D Converters
- 4.4.3. Implications of A/D Accuracy and Errors
- 4.5. On-Line Tool for Evaluating a Sensor Interface Design
- 4.6. Application Example
- 4.7. Summary
- References
- Selected Bibliography
- ch. 5 Using MCUs/DSPs to Increase Sensor IQ
- 5.1. Introduction
- 5.1.1. Other IC Technologies
- 5.1.2. Logic Requirements
- 5.2. MCU Control
- 5.3. MCUs for Sensor Interface
- 5.3.1. Peripherals
- 5.3.2. Memory
- 5.3.3. Input/Output
- 5.3.4. On-Board A/D Conversion
- 5.3.5. Power Saving Capability
- 5.3.6. Local Voltage or Current Regulation
- 5.4. DSP Control
- 5.4.1. Digital Signal Controllers
- 5.4.2. Field Programmable Gate Arrays
- 5.4.3. Algorithms Versus Look-Up Tables
- 5.5. Techniques and Systems Considerations
- 5.5.1. Linearization
- 5.5.2. PWM Control
- 5.5.3. Autozero and Autorange
- 5.5.4. Diagnostics
- 5.5.5. Reducing EMC/RFI
- 5.5.6. Indirect (Computed not Sensed) Versus Direct Sensing
- 5.6. Software, Tools, and Support
- 5.6.1. Design-in Support
- 5.7. Sensor Integration
- 5.8. Application Example
- 5.9. Summary
- References
- ch. 6 Communications for Smart Sensors
- 6.1. Introduction
- 6.2. Background and Definitions
- 6.2.1. Definitions
- 6.2.2. Background
- 6.3. Sources (Organizations) and Standards
- 6.4. Automotive Protocols
- 6.4.1. CAN Protocol
- 6.4.2. LIN Protocol
- 6.4.3. Media Oriented Systems Transport
- 6.4.4. FlexRay
- 6.4.5. Other Automotive Protocol Aspects
- 6.5. Industrial Networks
- 6.5.1. Example Industrial Protocols
- 6.6. Protocols in Other Applications
- 6.7. Protocols in Silicon
- 6.7.1. MCU with Integrated CAN
- 6.7.2. LIN Implementation
- 6.7.3. Ethernet Controller
- 6.8. Transitioning Between Protocols
- 6.9. Application Example
- 6.10. Summary
- References
- Additional References
- ch. 7 Control Techniques
- 7.1. Introduction
- 7.1.1. Programmable Logic Controllers
- 7.1.2. Open-Versus Closed-Loop Systems
- 7.1.3. PID Control
- 7.2. State Machines
- 7.3. Fuzzy Logic
- 7.4. Neural Networks
- 7.5.Combined Fuzzy Logic and Neural Networks
- 7.6. Adaptive Control
- 7.6.1. Observers for Sensing
- 7.7. Other Control Areas
- 7.7.1. RISC Versus CISC
- 7.8. Impact of Artificial Intelligence
- 7.9. Application Example
- 7.10. Summary
- References
- ch. 8 Wireless Sensing
- 8.1. Introduction
- 8.1.1. The RF Spectrum
- 8.1.2. Spread Spectrum
- 8.2. Wireless Data and Communications
- 8.3. Wireless Sensing Networks
- 8.3.1. ZigBee
- 8.3.2. ZigBee-Like Wireless
- 8.3.3. ANT+
- 8.3.4.6LoWPAN
- 8.3.5. Near Field Communication (NFC)
- 8.3.6.Z-Wave
- 8.3.7. Dust Networks
- 8.3.8. Other RF Wireless Solutions
- 8.3.9. Optical Signal Transmission
- 8.4. Industrial Wireless Sensing Networks
- 8.5. RF Sensing
- 8.5.1. Surface Acoustic Wave Devices
- 8.5.2. Radar
- 8.5.3. Light Detection and Ranging (LIDAR)
- 8.5.4. Global Positioning System
- 8.5.5. Remote Emissions Sensing
- 8.5.6. Remote Keyless Entry
- 8.5.7. Intelligent Transportation System
- 8.5.8. RF-ID
- 8.5.9. Other Remote Sensing
- 8.6. Telemetry
- 8.7. RF MEMS
- 8.8. Application Example
- 8.9. Summary
- References
- Selected Bibliography
- ch. 9 MEMS Beyond Sensors
- 9.1. Introduction
- 9.2. MEMS Actuators
- 9.2.1. Microvalves
- 9.2.2. Micromotors
- 9.2.3. Micropumps
- 9.2.4. Microdynamometer
- 9.2.5. Microsteam Engine
- 9.2.6. Actuators in Other Semiconductor Materials
- 9.3. Other Micromachined Structures
- 9.3.1. Cooling Channels
- 9.3.2. Microoptics
- 9.3.3. Microgripper
- 9.3.4. Microprobes
- 9.3.5. Micromirrors
- 9.3.6. Heating Elements
- 9.3.7. Thermionic Emitters
- 9.3.8. Field Emission Devices
- 9.3.9. Unfoldable Microelements
- 9.3.10. Micronozzles
- 9.3.11. Interconnects for Stacked Wafers
- 9.3.12. Nanoguitar
- 9.4. Application Example
- 9.5. Summary
- References
- ch. 10 Packaging, Testing, and Reliability Implications of Smarter Sensors
- 10.1. Introduction
- 10.2. Semiconductor Packaging Applied to Sensors
- 10.2.1. Increased Pin Count
- 10.3. Hybrid Packaging
- 10.3.1. Ceramic Packaging and Ceramic Substrates
- 10.3.2. Multichip Modules
- 10.3.3. Dual-Chip Packaging
- 10.3.4. BGA Packaging
- 10.4.Common Packaging for Sensors
- 10.4.1. Plastic Packaging
- 10.4.2. Surface-Mount Packaging
- 10.4.3. Flip-Chip
- 10.4.4. Wafer-Level Packaging
- 10.4.5.3-D Packaging
- 10.5. Reliability Implications
- 10.5.1. The Physics of Failure
- 10.5.2. Wafer-Level Sensor Reliability
- 10.6. Testing Smarter Sensors
- 10.7. Application Example
- 10.8. Summary
- References
- ch. 11 Mechatronics and Sensing Systems
- 11.1. Introduction
- 11.1.1. Integration and Mechatronics
- 11.2. Smart-Power ICs
- 11.3. Embedded Sensing
- 11.3.1. Temperature Sensing
- 11.3.2. Current Sensing in Power ICs
- 11.3.3. Diagnostics
- 11.3.4. MEMS Relays
- 11.4. Other System Aspects
- 11.4.1. Batteries
- 11.4.2. Field Emission Displays
- 11.4.3. System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference
- 11.5. Application Example
- 11.6. Summary
- References
- ch. 12 Standards for Smart Sensing
- 12.1. Introduction
- 12.2. Setting the Standards for Smart Sensors and Systems
- 12.3. IEEE 1451.1
- 12.3.1.Network-Capable Application Processor
- 12.3.2.Network Communication Models
- 12.4. IEEE 1451.2
- 12.4.1. STIM
- 12.4.2. Transducer Electronic Data Sheet
- 12.4.3. TII
- 12.4.4. Calibration/Correction Engine
- 12.4.5. Sourcing Power to STIMs
- 12.4.6. Representing Physical Units in the TEDS
- 12.5. IEEE 1451.3
- 12.6. IEEE 1451.4
- 12.7. IEEE 1451.5
- 12.8. IEEE P1451.6
- 12.9. IEEE 1451.7
- 12.10. Extending the System to the Network
- 12.11.
- Application Example
- 12.12. Summary
- References
- Selected Bibliography
- ch.
- 13 More Standards Impacting Sensors
- 13.1. Introduction
- 13.2. Sensor Plug and Play
- 13.3. Universal Serial Bus
- 13.4. Development Tools Establish De Facto Standards
- 13.5. Alternate Standards
- 13.5.1. Airplane Networks
- 13.5.2. Automotive Safety Network
- 13.5.3. Another Automotive Safety Network
- 13.5.4. Automotive Sensor Protocol
- 13.6. Consumer/Cell Phone Apps
- 13.7. Application Example
- 13.8. Summary
- References
- ch. 14 Sensor Fusion
- 14.1. Introduction
- 14.2. Sensor and Other Fusion Background
- 14.3. Automotive Applications
- 14.3.1. Ranging and Vision
- 14.3.2. Sensor Fusion for Virtual Sensors
- 14.3.3. Autonomous Driving
- 14.4. Industrial (Robotic) Applications
- 14.5. Consumer Applications
- 14.5.1. Fusion Software in the Sensor
- 14.5.2. Separate Fusion Software
- 14.5.3. Flexible Fusion Software
- 14.5.4. Agnostic Sensor Fusion
- 14.5.5. Simulation and Testing
- 14.6. Application Example
- 14.7. Summary
- References
- Selected Bibliography
- ch. 15 Energy Harvesting for Wireless Sensor Nodes
- 15.1. Introduction
- 15.2. Applications Drive Technology Implementation and Development
- 15.2.1. Structural Health Monitoring
- 15.2.2. Building Automations Systems
- 15.2.3. Industrial Applications
- 15.2.4. Automotive
- 15.2.5. Aircraft
- 15.2.6. Portable Consumer
- 15.2.7. Remote Distributed Applications
- 15.3.Complete System Consideration
- 15.4. EH Technologies
- 15.4.1. Thermoelectric EH
- 15.4.2. Piezoelectric EH
- 15.4.3. Photovoltaic EH
- 15.4.4. Electromagnetic EH
- 15.4.5. RF EH
- 15.4.6. Electromechanical EH
- 15.4.7. Multiple Energy Sources
- 15.4.8. Future Concepts
- Note continued: 15.5. Energy Storage
- 15.5.1. Batteries
- 15.5.2. Ultracapacitors
- 15.6. Energy Budget
- 15.6.1. Power Management ICs
- 15.6.2. MCUs
- 15.6.3. Wireless Transmission
- 15.6.4. Sensor Power Consumption
- 15.7. Development Systems
- 15.8. Application Example
- 15.9. Summary
- References
- Selected Bibliography
- ch. 16 The Next Phase of Sensing Systems
- 16.1. Introduction
- 16.2. Future Sensor Plus Semiconductor Capabilities
- 16.2.1. Monolithic Versus Package-Level Integration
- 16.3. Future System Requirements
- 16.3.1. Sensing in Automobiles
- 16.3.2. Sensing in Smart Phones
- 16.3.3. Health Care Sensors
- 16.4. Software, Sensing, and the System
- 16.4.1. Sensor Apps
- 16.4.2. Cloud Sensing
- 16.5. Trusted Sensing
- 16.6. Alternate Views of Smart Sensing
- 16.7. The Smart Loop
- 16.8. Application Example
- 16.9. Summary
- Acknowledgment
- References
- Selected Bibliography
- Appendix A
- List of Web Sites for Additional Smart Sensor and MEMS Information
- Selected Bibliography
- Smart Sensor Acronym Decoder and Glossary.