Cargando…

Solid oxide fuel cells : from materials to system modeling /

Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ni, Meng (Editor ), Zhao, T. S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Royal soc of chemistry, 2013.
Cambridge, UK : RSC Publishing, [2013]
Colección:RSC energy and environment series ; no. 7.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Introduction to Stationary Fuel Cells / C. Ozgur Colpan
  • 1.1. General Introduction to Fuel Cells
  • 1.2. Introduction to Low-Temperature Fuel Cells
  • 1.3. Introduction to Solid Oxide Fuel Cells
  • 1.3.1. Classification of SOFC Systems
  • 1.3.2. Fuel Options for SOFC
  • 1.4. Integrated SOFC Systems
  • 1.5. Basic SOFC Modelling
  • 1.6. Case Study
  • 1.6.1. Analysis
  • 1.6.2. Results and Discussion
  • 1.7. Conclusions
  • References
  • ch. 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) / Zongping Shao
  • 2.1.A General Introduction to Electrolyte of SOFCs
  • 2.2. The Requirements of Electrolyte
  • 2.3. Classification of Electrolytes
  • 2.3.1. Oxygen-ion Conducting Electrolyte
  • 2.3.2. Proton-conducting Electrolyte
  • 2.3.3. Dual-phase Composite Electrolyte
  • 2.4. Future Vision
  • References
  • ch. 3 Cathode Material Development / Changrong Xia
  • 3.1. Introduction
  • 3.2. Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs.
  • Contents note continued: 3.2.1. Electron Conducting Cathodes
  • 3.2.2. Mixed Oxygen Ion-Electron Conducting Cathodes
  • 3.2.3. Microstructure Optimized Cathodes
  • 3.2.4. Cathode Reaction Mechanisms
  • 3.3. Cathodes for Proton-Conducting Electrolyte Based SOFCs
  • 3.3.1. Electron-Conducting Cathodes
  • 3.3.2. Mixed Oxygen Ion-Electron Conducting Cathodes
  • 3.3.3. Mixed Electron-Proton Conducting Cathodes
  • 3.3.4. Microstructure Optimized Cathodes
  • 3.3.5. Cathode Reaction Mechanisms
  • 3.4. Summary and Conclusions
  • Acknowledgements
  • References
  • ch. 4 Anode Material Development / Josephine M. Hill
  • 4.1. Required Properties of Anode Materials
  • 4.2. Hydrogen Fuel
  • 4.3. Methane Fuel
  • 4.3.1. Conventional Ni/YSZ Anodes
  • 4.3.2. Alternative Anodes
  • 4.4. Higher Hydrocarbon Fuels (Propane and Butane)
  • 4.5. Fuels from Biomass
  • 4.5.1. Biomass-Simulated Gas
  • 4.5.2. Biomass
  • Actual Gas
  • 4.6. Liquid Fuels
  • 4.7. Ammonia Fuel
  • 4.8. Conclusions
  • References.
  • Contents note continued: ch. 5 Interconnect Materials for SOFC Stacks / Christopher Johnson
  • 5.1. Introduction
  • 5.2. Lanthanum Chromites as Interconnect
  • 5.2.1. Conductivity
  • 5.2.2. Thermal Expansion
  • 5.2.3. Gas Tightness, Processing and Chemical Stability
  • 5.2.4. Other Ceramic Interconnect
  • 5.2.5. Applications
  • 5.3. Metallic Alloys as Interconnect
  • 5.3.1. Selection of Metallic Materials
  • 5.3.2. Problems for Metallic Materials as Interconnect
  • 5.3.3. Interconnect Coatings
  • 5.3.4. Applications of Metallic Interconnects
  • 5.4. Concluding Remarks
  • References
  • ch. 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration / San Ping Jiang
  • 6.1. Introduction
  • 6.2. Infiltration Process
  • 6.2.1. The Technique
  • 6.2.2. Factors Affecting Infiltration Process and Microstructure
  • 6.3. Nano-structured Electrodes
  • 6.3.1. Performance Promotion Factor
  • 6.3.2. Nano-structured Cathodes
  • 6.3.3. Nano-structured Anodes.
  • Contents note continued: 6.4. Microstructure and Microstructural Stability of Nano-structured Electrodes
  • 6.4.1. Microstructure Effect
  • 6.4.2. Microstructural Stability of Nano-structured Electrodes
  • 6.5. Electrocatalytic Effects of Infiltrated Nanoparticles
  • 6.6. Conclusions
  • Acknowledgement
  • References
  • ch. 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes / N.P. Brandon
  • 7.1. The Importance of 3D Characterisation and the Limitations of Stereology
  • 7.2. Focused Ion Beam Characterisation
  • 7.2.1. The FIB-SEM Instrument
  • 7.2.2. Application of FIB-SEM Techniques to SOFC Materials
  • 7.3. Microstructural Characterisation using X-rays
  • 7.3.1.X-ray Microscopy and Tomography
  • 7.3.2. Lab X-ray Instruments
  • 7.3.3. Synchrotron X-ray Instruments
  • 7.3.4.4-Dimensional Tomography
  • 7.4. Data Analysis and Image Based Modelling
  • 7.4.1. Data Analysis
  • 7.4.2. Image Based Modelling
  • 7.5. Conclusions
  • References.
  • Contents note continued: ch. 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode / Nobuhide Kasagi
  • 8.1. Introduction
  • 8.2. Experimental
  • 8.2.1. Button Cell Experiment
  • 8.2.2. Microstructure Reconstruction Using FIB-SEM
  • 8.3. Numerical Method
  • 8.3.1. Quantification of Microstructural Parameters
  • 8.3.2. Governing Equations for Polarization Simulation
  • 8.3.3.Computational Scheme
  • 8.4. Results and Discussions
  • 8.5. Conclusions
  • Acknowledgements
  • References
  • ch. 9 Multi-scale Modelling of Solid Oxide Fuel Cells / Wolfgang G. Bessler
  • 9.1. Introduction and Motivation
  • 9.2. Modelling Methodologies: From the Atomistic to the System Scale
  • 9.2.1. Overview
  • 9.2.2. Molecular Level: Atomistic Modelling
  • 9.2.3. Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics
  • 9.2.4. Electrode Level (II): Porous Mass and Charge Transport
  • 9.2.5. Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport.
  • Contents note continued: 9.2.6. Stack Level: Computational Fluid Dynamics Based Design
  • 9.2.7. System Level
  • 9.3. Bridging the Gap Between Scales
  • 9.3.1. General Aspects
  • 9.3.2. Electrochemistry
  • 9.3.3. Transport
  • 9.3.4. Structure
  • 9.4. Multi-scale Models for SOFC System Simulation and Control
  • 9.4.1. Pressurized SOFC System for a Hybrid Power Plant
  • 9.4.2. Tubular SOFC System for Mobile APU Applications
  • 9.5. Conclusions
  • Acknowledgements
  • References
  • ch. 10 Fuel Cells Running on Alternative Fuels / Jing-Li Luo
  • 10.1. Introduction
  • 10.2. Fuel Cell Reactor Set-up
  • 10.3. SOFCs Running on Sourgas
  • 10.4. SOFCs Running on C2H6 and C3H8
  • 10.4.1. Development of Electrolyte of PC-SOFCs
  • 10.4.2. Development of Anode Materials of PC-SOFCs
  • 10.5. SOFCs Running on Syngas Containing H2S
  • 10.6. SOFCs Running on Pure H2S
  • 10.7. Summary
  • Acknowledgements
  • References
  • ch. 11 Long Term Operating Stability / Harumi Yokokawa
  • 11.1. Introduction.
  • Contents note continued: 11.2. Durability of Stacks/Systems
  • 11.2.1. Determination of Stack Performance
  • 11.2.2. Performance Degradation and Materials Deteriorations
  • 11.2.3. Impurities and their Poisoning Effects on Electrode Reactivity
  • 11.3. Deteriorations of Electrolytes
  • 11.3.1. Destabilization of Mn Dissolved YSZ
  • 11.3.2. Conductivity Decrease in Ni-dissolved YSZ
  • 11.4. Performance Degradations of Cathode and Anodes
  • 11.4.1. Cathode Poisoning
  • 11.4.2. Sintering of Ni Cermet Anodes
  • 11.5. For Future Work
  • 11.6. Conclusions
  • Acknowledgement
  • References
  • ch. 12 Application of SOFCs in Combined Heat, Cooling and Power Systems / P. Kazempoor
  • 12.1. Introduction
  • 12.1.1. Drivers for Interest in Co- and Tri-generation Using Fuel Cells
  • 12.1.2. Overview of CHP and CCHP
  • 12.2. Application Characteristics & Building Integration
  • 12.2.1.Commercial Buildings
  • 12.2.2. Residential Applications
  • 12.2.3. Building Integration & Operating Strategies.
  • Contents note continued: 12.3. Overview of SOFC-CHP/CCHP Systems
  • 12.3.1. SOFC System Description for CHP (Co-generation)
  • 12.3.2. SOFC System Description for CCHP (Tri-generation)
  • 12.4. Modelling Approaches: Cell to System
  • 12.4.1. System-level Modelling and Performance Estimation
  • 12.4.2. Cell/Stack Modelling for SOFC System Simulation
  • 12.4.3. System Optimization Using Techno-economic Model Formulations
  • 12.5. Evaluation of SOFC Systems in CCHP Applications
  • 12.5.1. Micro-CHP
  • 12.5.2. Large-scale CHP and CCHP Applications
  • 12.6.Commercial Developments of SOFC-CHP Systems
  • 12.6.1.Commercialization Efforts
  • 12.6.2. Demonstrations
  • 12.7. Market Barriers and Challenges
  • 12.7.1. Energy Pricing
  • 12.7.2. SOFC Costs
  • 12.7.3. Technical Barriers
  • 12.7.4. Market Barriers and Environmental Impact
  • 12.8. Summary
  • References
  • ch. 13 Integrated SOFC and Gas Turbine Systems / Massimo Dentice D'Accadia
  • 13.1. Introduction
  • 13.2. SOFC/GT Prototypes.
  • Contents note continued: 13.3. SOFC/GT Layouts Classification
  • 13.4. SOFC/GT Pressurized Cycles
  • 13.4.1. Internally Reformed SOFC/GT Cycles
  • 13.4.2. Anode Recirculation
  • 13.4.3. Heat Recovery Steam Generator (HRSG)
  • 13.4.4. Externally Reformed SOFC/GT Cycles
  • 13.4.5. Hybrid SOFC/GT-Cheng Cycles
  • 13.4.6. Hybrid SOFC/Humidified Air Turbine (HAT)
  • 13.4.7. Hybrid SOFC/GT-ITSOFC Cycles
  • 13.4.8. Hybrid SOFC/GT-Rankine Cycles
  • 13.4.9. Hybrid SOFC/GT with Air Recirculation or Exhaust Gas Recirculation (EGR)
  • 13.5. SOFC/GT Atmospheric Cycles
  • 13.6. SOFC/GT Power Plant: Control Strategies
  • 13.7. Hybrid SOFC/GT Systems Fed by Alternative Fuels
  • 13.8. IGCC SOFC/GT Power Plants
  • References
  • ch. 14 Modelling and Control of Solid Oxide Fuel Cell / Bo Huang
  • 14.1. Static Identification Model
  • 14.1.1. Nonlinear Modelling Based on LS-SVM
  • 14.1.2. Nonlinear Modelling Based on GA-RBF
  • 14.2. Dynamic Identification Modelling for SOFC
  • 14.2.1. ANFIS Identification Modelling.
  • Contents note continued: 14.2.2. Hammerstein Identification Modelling
  • 14.3. Control Strategies of the SOFC
  • 14.3.1. Constant Voltage Control
  • 14.3.2. Constant Fuel Utilization Control
  • 14.3.3. Simulation
  • 14.4. Conclusions.