Cargando…

Fluid-structure interactions. Volume 1, Slender structures and axial flow /

The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Paidoussis, M. P. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2014.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1 Introduction
  • 1.1. General overview
  • 1.2. Classification of flow-induced vibrations
  • 1.3. Scope and contents of this book
  • ch. 2 Concepts, Definitions and Methods in Fluid-Structure Interactions
  • 2.1. Discrete and distributed parameter systems
  • 2.2. The fluid mechanics of fluid-structure interactions
  • 2.3. Linear and nonlinear dynamics
  • ch. 3 Pipes Conveying Fluid: Linear Dynamics I
  • 3.1. Introduction
  • 3.2. The fundamentals
  • 3.3. The equations of motion
  • 3.4. Pipes with supported ends
  • 3.5. Cantilevered pipes
  • 3.6. Systems with added springs, supports, masses and other modifications
  • 3.7. Wave propagation in long pipes
  • 3.8. Articulated pipes
  • ch. 4 Pipes Conveying Fluid: Linear Dynamics II
  • 4.1. Introduction
  • 4.2. Nonuniform pipes
  • 4.3. Aspirating pipes
  • 4.4. Short pipes and refined flow modelling
  • 4.5. Pipes with harmonically perturbed flow
  • 4.6. Rotating cantilevered pipes
  • 4.7. Forced vibration.
  • 4.8. Applications
  • 4.9. Concluding remarks
  • ch. 5 Pipes Conveying Fluid: Nonlinear and Chaotic Dynamics
  • 5.1. Introductory comments
  • 5.2. The nonlinear equations of motion
  • 5.3. Equations for articulated systems
  • 5.4. Methods of solution and analysis
  • 5.5. Pipes with supported ends
  • 5.6. Articulated cantilevered pipes
  • 5.7. Cantilevered pipes
  • 5.8. Chaotic dynamics
  • 5.9. Nonlinear parametric resonances
  • 5.10. Oscillation-Induced flow
  • 5.11. Concluding remarks
  • ch. 6 Curved Pipes Conveying Fluid
  • 6.1. Introduction
  • 6.2. Formulation of the problem
  • 6.3. Finite element analysis
  • 6.4. Curved pipes with supported ends
  • 6.5. Curved cantilevered pipes
  • 6.6. Curved pipes with an axially sliding end
  • ch. 7 Cylindrical Shells Containing or Immersed in Flow: Basic Dynamics
  • 7.1. Introductory remarks
  • 7.2. General dynamical behaviour
  • 7.3. Refinements and diversification
  • 7.4. Wave propagation and acoustic coupling.
  • 7.5. Viscous and confinement effects
  • 7.6. Nonlinear dynamics
  • 7.7. Concluding remarks
  • Epilogue
  • Appendix A A First-Principles Derivation of the Equation of Motion of a Pipe Conveying Fluid
  • Appendix B Analytical Evaluation of bsr1 Csr and dsr
  • Appendix C Destabilization by Damping: T. Brooke Benjamin's Work
  • Appendix D Experimental Methods for Elastomer Pipes
  • D.1. Materials, equipment and procedures
  • D.2. Short pipes, shells and cylinders
  • D.3. Flexural rigidity and damping constants
  • D.4. Measurement of frequencies and damping
  • Appendix E The Timoshenko Equations of Motion and Associated Analysis
  • E.1. The equations of motion
  • E.2. The eigenfunctions
  • E.3. The integrals Ikn
  • Appendix F Some of the Basic Methods of Nonlinear Dynamics
  • F.1. Lyapunov method
  • F.2. Centre manifold reduction
  • F.3. Normal forms
  • F.4. The method of averaging
  • F.5. Bifurcation theory and unfolding parameters
  • F.6. Partial differential equations.
  • Appendix G Newtonian Derivation of the Nonlinear Equations of Motion of a Pipe Conveying Fluid
  • G.1. Cantilevered pipe
  • G.2. Pipe fixed at both ends
  • Appendix H Nonlinear Dynamics Theory Applied to a Pipe Conveying Fluid
  • H.1. Centre manifold
  • H.2. Normal form
  • Appendix I The Fractal Dimension from the Experimental Pipe-Vibration Signal
  • Appendix J Detailed Analysis for the Derivation of the Equations of Motion of Chapter 6
  • J.1. Relationship between (Xo, Yo, Zo and x, y, z)
  • J.2. The expressions for curvature and twist
  • J.3. Derivation of the fluid-acceleration vector
  • J.4. The equations of motion for the pipe
  • Appendix K Matrices for the Analysis of an Extensible Curved Pipe Conveying Fluid
  • Appendix L Matrices in Hybrid Analytical/Finite-Element Method of Lakis et al
  • L.1. Matrices for a cylindrical shell in vacuo
  • L.2. Matrices associated with fluid flow in a cylindrical shell
  • Appendix M Anisotropic Shells
  • Appendix N Nonlinear Motions of a Shell Conveying Fluid
  • N.1. The particular solution, Fp
  • N.2. The discretized equations of motion.