Cargando…

Water reclamation technologies for safe managed aquifer recharge /

Water Reclamation Technologies for Safe Managed Aquifer Recharge has been developed from the RECLAIM WATER project supported by the European Commission under Thematic Priority 'Global Change and Ecosystems' of the Sixth Framework Programme. Its strategic objective is to develop hazard miti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kazner, Christian, Wintgens, Thomas, Dillon, Peter
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : IWA Publishing, 2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1. Introduction / Christian Kazner [and others]
  • 1.1. The importance of managed aquifer recharge
  • 1.2. Research in managed aquifer recharge
  • 1.3. Objectives of this book
  • 1.4. Chapter contents
  • References
  • pt. A. International MAR case studies
  • ch. 2. Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis / Kristell Le Corre [and others]
  • 2.1. Introduction
  • 2.2. Methodology
  • 2.3. Results
  • 2.3.1 .Basic wastewater parameters
  • 2.3.2. Microbiological parameters
  • 2.3.3. Trace elements
  • 2.3.4. Salinity
  • 2.4. Conclusions
  • References
  • ch. 3. Indirect potable reuse via managed aquifer recharge in the Torreele/St-André project / Emmanuel van Houtte [and others]
  • 3.1. Introduction
  • 3.1.1. Water management situation
  • 3.1.2. History of implementation
  • 3.1.3. Treatment and implementation concept
  • 3.1.4. Authorisation procedure
  • 3.2. Description of the test site
  • 3.2.1. Waste water treatment plant Wulpen.
  • Contents note continued: 3.2.2. Advanced water treatment plant Torreele
  • 3.2.3. Groundwater infiltration at St. André
  • 3.2.4. Groundwater extraction and treatment facility at St. André
  • 3.2.5. Hydrogeology
  • 3.3. Treatment targets and regulatory framework
  • 3.3.1. Regulated substances
  • 3.3.2. Unregulated substances
  • 3.4. Water quality monitoring and assessment
  • 3.4.1. Regular monitoring program
  • 3.4.2. Measuring program of RECLAIM WATER
  • 3.4.3. Results
  • 3.4.4. Technology performance and contaminant monitoring
  • 3.4.5. Concentrate disposal
  • 3.5. Conclusions
  • References
  • ch. 4. Managed aquifer recharge of a karstic aquifer in Nardó, Italy / Constantino Masciopinto [and others]
  • 4.1. Introduction
  • 4.1.1. Historical background
  • 4.1.2. Motivations for recharge and use of abstracted water
  • 4.1.3. Authorisation procedure
  • 4.2. Description of the test site
  • 4.2.1. Study area
  • 4.2.2. Hydrogeology
  • 4.2.3. Process design and operation
  • 4.2.4. Clogging.
  • Contents note continued: 4.3. Technology performance and contaminant monitoring
  • 4.3.1. Wastewater chemical-physical parameters
  • 4.3.2. Microbiological parameters
  • 4.3.3. Salinity related parameters
  • 4.3.4. Water quality changes during MAR
  • 4.4. Operational feedback
  • 4.5. Conclusion
  • References
  • ch. 5. Managed aquifer recharge via river bed in Sabadell, Spain / M. Neus Ayuso-Gabella [and others]
  • 5.1. Introduction
  • 5.1.1. Historical background
  • 5.1.2. Motivations for recharge and use of abstracted water
  • 5.2. Description of the test site
  • 5.2.1. Study area
  • 5.2.2. Ripoll River WWTP
  • 5.2.3. Ripoll River recharge and reuse scheme
  • 5.2.4. Hydrogeology
  • 5.2.5. Process design and operation
  • 5.3. Technology performance and contaminant monitoring
  • 5.3.1. Basic wastewater parameters
  • 5.3.2. Nutrients
  • 5.3.3. Microbiological parameters
  • 5.3.4. Salinity related parameters
  • 5.3.5. Trace elements analysis
  • 5.3.6. Redox conditions
  • 5.4. Operational feedback
  • 5.5. Conclusion.
  • Contents note continued: References
  • ch. 6. Managed aquifer recharge for agricultural reuse in Shafdan, Israel / Haim Cikurel, Joseph Guttman and Avi Aharoni
  • 6.1. Introduction
  • 6.1.1. Water management situation
  • 6.1.2. Historical background
  • 6.1.3. Motivations for recharge and use of abstracted water
  • 6.1.4. Authorisation procedure
  • 6.2. Description of the test site
  • 6.2.1. Existing full-scale system
  • 6.2.2. Pilot-scale UF short SAT system
  • 6.3. Technology performance and contaminant monitoring
  • 6.3.1. Nutrients and bulk organics
  • 6.3.2. Dissolved oxygen, iron and manganese
  • 6.3.3. Microbiological contaminants
  • 6.3.4. Summary removal capacity UF-short SAT
  • 6.3.5. Summary removal capacity conventional SAT
  • 6.4. Conclusion
  • 6.4.1. Operational results from short SAT
  • 6.4.2. Removal capacity of short SAT
  • 6.4.3. Outlook
  • References
  • ch. 7. The aquifer storage, transfer and recovery project in Salisbury, South Australia / Declan Page [and others]
  • 7.1. Introduction
  • 7.1.1. Historical background.
  • Contents note continued: 7.1.2. Motivations for recharge and use of abstracted water
  • 7.1.3. Authorisation procedure
  • 7.2. Description of the test site
  • 7.2.1. Study area
  • 7.2.2. Hydrogeology
  • 7.2.3. Process design and operation
  • 7.3. Technology performance and contaminant monitoring
  • 7.3.1. Rainfall, stormwater capture and reuse
  • 7.3.2. ASTR well-field aquifer conditioning
  • 7.3.3. ASTR well field, first injection phase
  • 7.3.4. Water quality assessment based on protocol 1
  • 7.4. Operational feedback
  • 7.5. Conclusion
  • References
  • ch. 8. Managed aquifer recharge for potable reuse in Atlantis, South Africa / Gideon Tredoux [and others]
  • 8.1. Introduction
  • 8.1.1. Historical background
  • 8.1.2. Motivations for recharge and use of abstracted water
  • 8.1.3. Authorisation procedure
  • 8.2. Description of the test site
  • 8.2.1. Study area
  • 8.2.2. Hydrogeology
  • 8.2.3. Process design and operation
  • 8.3. Technology performance and contaminant monitoring.
  • Contents note continued: 8.3.1. Dissolved organic carbon
  • 8.3.2. Electrical conductivity
  • 8.3.3. Sulphate
  • 8.3.4. Potassium and calcium
  • 8.3.5. Boron
  • 8.3.6. Redox conditions
  • 8.3.7. Microbiological parameters
  • 8.3.8. Organic micropollutants
  • 8.3.9. Summary of water quality monitoring
  • 8.3.10. Operational feedback
  • 8.4. Conclusions
  • References
  • ch. 9. Unplanned aquifer recharge in El Mezquital/Tula Valley, Mexico / Bianca Jiménez [and others]
  • 9.1. Introduction
  • 9.1.1. Water management situation
  • 9.1.2. History of the development of the site
  • 9.1.3. Technical set-up and operational experiences
  • 9.1.4. Analytical methodology
  • 9.2. Water quality assessment
  • 9.2.1. Irrigation water in the Tula Valley
  • 9.2.2. Supply water
  • 9.2.3. Soil and soil column analysis
  • 9.3. Conclusions
  • References
  • ch. 10. Managed aquifer recharge by enhanced direct injection-well recharge in Gaobeidian/Beijing, China / Cheng Xu Zhou and Xuan Zhao
  • 10.1. Introduction
  • 10.1.1. Historical background.
  • Contents note continued: 10.1.2. Motivations for recharge and use of abstracted water
  • 10.1.3. Legal framework and authorisation procedure
  • 10.2. Description of the test site
  • 10.2.1. Study area
  • 10.2.2. Process design and operation
  • 10.3. Technology performance and contaminant monitoring
  • 10.3.1. Water quality
  • 10.3.2. Operational feedback
  • 10.4. Conclusion
  • References
  • pt. B. Water quality analysis in MAR
  • - Methods and results
  • ch. 11. Water quality analysis-- microbiological hazards / Valter Tandoi [and others]
  • 11.1. Introduction
  • 11.1.1. Overview on selected water quality parameters, relevance
  • 11.1.2. Detection and quantification methods
  • 11.2. Case studies
  • 11.2.1. Belgium (Wulpen/Torreele)
  • 11.2.2. Italy (Nardó)
  • 11.2.3. Spain (Sabadell)
  • 11.2.4. Coherence of pathogen and indicator presence
  • 11.2.5. Results of pathogen decay studies
  • 11.3. Conclusions
  • 11.3.1. Pathogen contamination numbers
  • 11.3.2. Treatment performances of MAR processes.
  • Contents note continued: 11.3.3. Pathogens and indicators relationships
  • 11.3.4. ARG in Reclaim Water sites
  • 11.3.5. In situ pathogen decay rate
  • References
  • ch. 12. Water quality analysis : detection, fate, and behaviour, of selected trace organic pollutants at managed aquifer recharge sites / Mathius Ernst [and others]
  • 12.1. Introduction
  • 12.2. Methods
  • 12.2.1. Sampling, storage and processing at the demonstration sites
  • 12.2.2. Method 1 : antibiotics, neutral drugs, and other micropollutants
  • 12.2.3. Method 2 : acidic drugs and ICM
  • 12.2.4. Method 3 : estrogens
  • 12.2.5. Method 4 : nitrosamines
  • 12.2.6. Method 5 : AOI
  • 12.2.7. Quality assurance
  • 12.3. Results and discussion
  • 12.3.1. Nardo
  • 12.3.2. Sabadell
  • 12.3.3. Shafdan
  • 12.3.4. Gaobeidian
  • 12.3.5. Wulpen/Torrele
  • 12.4. Cross site analysis
  • 12.5. Conclusions
  • References
  • ch. 13. Water quality analysis---bulk organic compounds / Saroj K. Sharma [and others]
  • 13.1. Overview of selected water quality parameters.
  • Contents note continued: 13.2. Sampling, storage and processing
  • 13.3. Analytical methods
  • 13.4. Selected results from laboratory and case studies
  • 13.4.1. Laboratory studies
  • 13.4.2. Case studies
  • 13.5. Summary and conclusions
  • References
  • pt. C. Water reclamation technologies in MAR
  • ch. 14. Treatment trains utilising natural and hybrid processes / Saroj K. Sharma [and others]
  • 14.1. Natural systems for water reclamation
  • 14.2. Overview and methods of natural treatment systems related studies under Reclaim Water
  • 14.3. Performance of treatment trains
  • 14.3.1. Bulk organics removal
  • 14.3.2. Nutrient removal
  • 14.3.3. Organic micropollutant removal
  • 14.3.4. Pathogen removal
  • 14.3.5. Soil clogging potential
  • 14.4. Operational aspects
  • 14.4.1. Soil aquifer treatment
  • 14.4.2. Constructed wetlands
  • 14.5. Economic aspects
  • 14.5.1. Soil aquifer treatment
  • 14.5.2. Constructed wetlands
  • 14.6. Conclusions
  • References.
  • Contents note continued: ch. 15. Membrane based treatment trains for managed aquifer recharge / Christian Kazner [and others]
  • 15.1. Membranes in water reclamation
  • 15.2. Overview and methods of membrane treatment related studies under Reclaim Water
  • 15.2.1. Emerging membrane based treatment trains
  • 15.2.2. Membrane studies under Reclaim Water
  • 15.3. Performance of treatment trains
  • 15.3.1. Dual membrane treatment by UF/RO
  • 15.3.2. Direct NF treatment
  • 15.3.3. PAC/NF treatment
  • 15.3.4. GAC/NF treatment
  • 15.3.5. NF/GAC treatment
  • 15.3.6. MBR/NF treatment
  • 15.4. Operational performance
  • 15.4.1. Dual membrane treatment
  • 15.4.2. PAC/NF treatment
  • 15.4.3. Direct NF
  • 15.4.4. NF/GAC treatment
  • 15.4.5. GAC/NF treatment
  • 15.4.6. MBR/NF treatment
  • 15.5. Economic aspects
  • 15.5.1. Dual membrane treatment
  • 15.5.2. NF-AC hybrid systems
  • 15.5.3. MBR/NF treatment
  • 15.6. Summary and conclusions
  • 15.6.1. Removal rates
  • 15.6.2. Comparison with other alternative processes.
  • Contents note continued: 15.6.3. Treatment of NF concentrate
  • 15.6.4. Operational aspects
  • 15.6.5. Conclusion
  • References
  • ch. 16. Treatment of reject streams from dense membrane processes / How Yong Ng [and others]
  • 16.1. Treatment of RO Concentrate
  • 16.2. Capacitive deionisation (CDI)
  • 16.2.1. Concept
  • 16.2.2. Plant set-up
  • 16.2.3. Analytical methods
  • 16.2.4. Water quality
  • 16.2.5. Operational issues
  • 16.2.6. Cost estimation
  • 16.2.7. Conclusions
  • 16.3. Ozonation
  • 16.3.1. Removal of emerging pollutants
  • 16.3.2. Increase of biodegradability by ozonation
  • 16.3.3. Bromate formation
  • 16.3.4. Toxicity of RO concentrate
  • 16.3.5. Oxidation product formation
  • 16.4. Granular activated carbon with microfiltration (BIO MAC)
  • 16.4.1. Plant set-up
  • 16.4.2. Removal capacity
  • 16.4.3. Operational regime and conclusions
  • 16.5. Subsurface flow reed bed
  • 16.5.1. Plant set-up
  • 16.5.2. Removal capacity
  • 16.6. Conclusions
  • References
  • pt. D. Design and management of MAR systems.
  • Contents note continued: ch. 17. General design considerations / Peter J. Dillon
  • 17.1. Introduction
  • 17.2. Identifying project objectives---what are the options?
  • 17.2.1. Options for storage increase
  • 17.2.2. Options for water quality improvement
  • 17.2.3. Options for sustaining groundwater levels and dependent ecosystems
  • 17.2.4. Whole catchment and groundwater system context
  • 17.3. Steps in establishing a MAR project
  • 17.3.1. Viability assessment
  • 17.3.2. Degree of difficulty assessment
  • 17.3.3. Investigations and risk assessment
  • 17.4. Site selection and aquifer characterisation
  • 17.5. Operation and maintenance
  • 17.6. Monitoring
  • 17.7. Conclusions
  • References
  • ch. 18. Use of groundwater models for prediction and optimisation of the behaviour of MAR sites / Wolfram Kloppmann [and others]
  • 18.1. Groundwater modelling and artificial recharge : what model for what problem
  • 18.1.1. Models as tool to design and operate a MAR system in a given legal context.
  • Contents note continued: 18.1.2. Model data requirements and hydrogeological characterisation
  • 18.1.3. Groundwater modelling and artificial recharge: Model selection
  • 18.2. Case Studies
  • 18.2.1. Case study 1 : Shafdan
  • 18.2.2. Case study 2 : Adelaide
  • 18.2.3. Case study 3 : Nardó
  • 18.2.4. Case study 4 : Wulpen
  • 18.3. Modelling of MAR system : learning from the Reclaim Water case studies
  • References
  • ch. 19. Risk assessment and risk management in managed aquifer recharge / Declan Page [and others]
  • 19.1. Methodologies for risk assessment and management
  • 19.1.1. European Union
  • 19.1.2. Australia
  • 19.2. Chemical risk assessment methodology
  • 19.3. Chemical risk assessment of the case study sites
  • 19.3.1. Source waters
  • 19.3.2. Recovered waters
  • 19.4. Quantitative microbial risk assessment methodology
  • 19.5. QMRA of the case studies
  • 19.5.1. Aquifer barrier treatment characterisation
  • 19.5.2. Case study sites human health risk assessment.
  • Contents note continued: 19.5.3. Valuing the aquifer barrier in MAR schemes
  • 19.5.4. Integrating aquifer treatment with engineered treatments
  • 19.6. Conclusions
  • References
  • ch. 20. Risk perception and communication for managed aquifer recharge / Kristell Le Corre [and others]
  • 20.1. Introduction
  • 20.2. Reasons for and objectives of risk communication
  • 20.3. Principles of risk communication
  • 20.3.1. Building and keeping trust
  • 20.3.2. Framing and managing communication
  • 20.3.3. Some comments on bias and transparency
  • 20.4. Communicating risk
  • 20.5. Reconciling conflicting views
  • 20.5.1. Objections over hazard risk
  • 20.5.2. Objections over outrage factors
  • 20.6. Conclusions
  • References
  • ch. 21. Decision support for MAR planning in the context of integrated water resources management : the Gabardine DSS / Bernd Rusteberg [and others]
  • 21.1. MAR and integrated water resources management
  • 21.2. Decision support for MAR planning
  • 21.3. The Gabardine decision support system.
  • Contents note continued: 21.3.1. MAR planning process
  • 21.3.2. DSS structure and GUI
  • 21.3.3. Spatial database and GIS platform
  • 21.3.4. The G-DSS planning module
  • 21.4. G-DSS applications
  • 21.4.1. The Querenc̦a-Silves case study, Portugal
  • 21.4.2. The Gaza-Strip case study, Palestine
  • 21.5. Summary and outlook
  • References
  • pt. E. Promoting MAR systems for water recycling
  • ch. 22. Managed aquifer recharge as a component of sustainable water strategies---a brief guidance for EU policies / Thomas Wintgens [and others]
  • 22.1. Introduction
  • 22.1.1. Water reuse as a water stress mitigation option
  • 22.1.2. Managed aquifer recharge (MAR)
  • 22.2. Legal framework
  • 22.2.1. European legislation relevant to managed aquifer recharge
  • 22.2.2. Aquifer recharge specific regulations and guidelines
  • 22.3. Risk assessment and management approaches
  • 22.3.1. Microbial risks
  • 22.3.2. Chemical risks---new substances of concern
  • 22.4. Technology options.
  • Contents note continued: 22.5. Recommendations on scheme authorisation and future developments
  • 22.5.1. Which investigations shall be carried out during MAR planning?
  • 22.5.2. What can be controlled and how?
  • 22.5.3. What role will MAR with reclaimed water play in the future?
  • 22.5.4. What should be done to promote the strategic adoption of MAR with reclaimed water as a water stress mitigation option?
  • References.