Computational models for polydisperse particulate and multiphase systems /
Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to pr...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2013.
|
Colección: | Cambridge series in chemical engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Notation
- 1 Introduction
- 1.1 Disperse multiphase flows
- 1.2 Two example systems
- 1.2.1 The population-balance equation for fine particles
- 1.2.2 The kinetic equation for gas
- particle flow
- 1.3 The mesoscale modeling approach
- 1.3.1 Relation to microscale models
- 1.3.2 Number-density functions
- 1.3.3 The kinetic equation for the disperse phase
- 1.3.4 Closure at the mesoscale level
- 1.3.5 Relation to macroscale models
- 1.4 Closure methods for moment-transport equations
- 1.4.1 Hydrodynamic models
- 1.4.2 Moment methods
- 1.5 A road map to Chapters 2
- 8
- 2 Mesoscale description of polydisperse systems
- 2.1 Number-density functions (NDF)
- 2.1.1 Length-based NDF
- 2.1.2 Volume-based NDF
- 2.1.3 Mass-based NDF
- 2.1.4 Velocity-based NDF
- 2.2 The NDF transport equation
- 2.2.1 The population-balance equation (PBE)
- 2.2.2 The generalized population-balance equation (GPBE)
- 2.2.3 The closure problem
- 2.3 Moment-transport equations
- 2.3.1 Moment-transport equations for a PBE
- 2.3.2 Moment-transport equations for a GPBE
- 2.4 Flow regimes for the PBE
- 2.4.1 Laminar PBE
- 2.4.2 Turbulent PBE
- 2.5 The moment-closure problem
- 3 Quadrature-based moment methods
- 3.1 Univariate distributions
- 3.1.1 Gaussian quadrature
- 3.1.2 The product
- difference (PD) algorithm
- 3.1.3 The Wheeler algorithm
- 3.1.4 Consistency of a moment set
- 3.2 Multivariate distributions
- 3.2.1 Brute-force QMOM
- 3.2.2 Tensor-product QMOM
- 3.2.3 Conditional QMOM
- 3.3 The extended quadrature method of moments (EQMOM)
- 3.3.1 Relationship to orthogonal polynomials
- 3.3.2 Univariate EQMOM
- 3.3.3 Evaluation of integrals with the EQMOM
- 3.3.4 Multivariate EQMOM
- 3.4 The direct quadrature method of moments (DQMOM)
- 4 The generalized population-balance equation.
- 4.1 Particle-based definition of the NDF
- 4.1.1 Definition of the NDF for granular systems
- 4.1.2 NDF estimation methods
- 4.1.3 Definition of the NDF for fluid
- particle systems
- 4.2 From the multi-particle
- fluid joint PDF to the GPBE
- 4.2.1 The transport equation for the multi-particle joint PDF
- 4.2.2 The transport equation for the single-particle joint PDF
- 4.2.3 The transport equation for the NDF
- 4.2.4 The closure problem
- 4.3 Moment-transport equations
- 4.3.1 A few words about phase-space integration
- 4.3.2 Disperse-phase number transport
- 4.3.3 Disperse-phase volume transport
- 4.3.4 Fluid-phase volume transport
- 4.3.5 Disperse-phase mass transport
- 4.3.6 Fluid-phase mass transport
- 4.3.7 Disperse-phase momentum transport
- 4.3.8 Fluid-phase momentum transport
- 4.3.9 Higher-order moment transport
- 4.4 Moment closures for the GPBE
- 5 Mesoscale models for physical and chemical processes
- 5.1 An overview of mesoscale modeling
- 5.1.1 Mesoscale models in the GPBE
- 5.1.2 Formulation of mesoscale models
- 5.1.3 Relation to macroscale models
- 5.2 Phase-space advection: mass and heat transfer
- 5.2.1 Mesoscale variables for particle size
- 5.2.2 Size change for crystalline and amorphous particles
- 5.2.3 Non-isothermal systems
- 5.2.4 Mass transfer to gas bubbles
- 5.2.5 Heat/mass transfer to liquid droplets
- 5.2.6 Momentum change due to mass transfer
- 5.3 Phase-space advection: momentum transfer
- 5.3.1 Buoyancy and drag forces
- 5.3.2 Virtual-mass and lift forces
- 5.3.3 Boussinesq
- Basset, Brownian, and thermophoretic forces
- 5.3.4 Final expressions for the mesoscale acceleration models
- 5.4 Real-space advection
- 5.4.1 The pseudo-homogeneous or dusty-gas model
- 5.4.2 The equilibrium or algebraic Eulerian model
- 5.4.3 The Eulerian two-fluid model.
- 5.4.4 Guidelines for real-space advection
- 5.5 Diffusion processes
- 5.5.1 Phase-space diffusion
- 5.5.2 Physical-space diffusion
- 5.5.3 Mixed phase- and physical-space diffusion
- 5.6 Zeroth-order point processes
- 5.6.1 Formation of the disperse phase
- 5.6.2 Nucleation of crystals from solution
- 5.6.3 Nucleation of vapor bubbles in a boiling liquid
- 5.7 First-order point processes
- 5.7.1 Particle filtration and deposition
- 5.7.2 Particle breakage
- 5.8 Second-order point processes
- 5.8.1 Derivation of the source term
- 5.8.2 Source terms for aggregation and coalescence
- 5.8.3 Aggregation kernels for fine particles
- 5.8.4 Coalescence kernels for droplets and bubbles
- 6 Hard-sphere collision models
- 6.1 Monodisperse hard-sphere collisions
- 6.1.1 The Boltzmann collision model
- 6.1.2 The collision term for arbitrary moments
- 6.1.3 Collision angles and the transformation matrix
- 6.1.4 Integrals over collision angles
- 6.1.5 The collision term for integer moments
- 6.2 Polydisperse hard-sphere collisions
- 6.2.1 Collision terms for arbitrary moments
- 6.2.2 The third integral over collision angles
- 6.2.3 Collision terms for integer moments
- 6.3 Kinetic models
- 6.3.1 Monodisperse particles
- 6.3.2 Polydisperse particles
- 6.4 Moment-transport equations
- 6.4.1 Monodisperse particles
- 6.4.2 Polydisperse particles
- 6.5 Application of quadrature to collision terms
- 6.5.1 Flux terms
- 6.5.2 Source terms
- 7 Solution methods for homogeneous systems
- 7.1 Overview of methods
- 7.2 Class and sectional methods
- 7.2.1 Univariate PBE
- 7.2.2 Bivariate and multivariate PBE
- 7.2.3 Collisional KE
- 7.3 The method of moments
- 7.3.1 Univariate PBE
- 7.3.2 Bivariate and multivariate PBE
- 7.3.3 Collisional KE
- 7.4 Quadrature-based moment methods
- 7.4.1 Univariate PBE.
- 7.4.2 Bivariate and multivariate PBE
- 7.4.3 Collisional KE
- 7.5 Monte Carlo methods
- 7.6 Example homogeneous PBE
- 7.6.1 A few words on the spatially homogeneous PBE
- 7.6.2 Comparison between the QMOM and the DQMOM
- 7.6.3 Comparison between the CQMOM and Monte Carlo
- 8 Moment methods for inhomogeneous systems
- 8.1 Overview of spatial modeling issues
- 8.1.1 Realizability
- 8.1.2 Particle trajectory crossing
- 8.1.3 Coupling between active and passive internal coordinates
- 8.1.4 The QMOM versus the DQMOM
- 8.2 Kinetics-based finite-volume methods
- 8.2.1 Application to PBE
- 8.2.2 Application to KE
- 8.2.3 Application to GPBE
- 8.3 Inhomogeneous PBE
- 8.3.1 Moment-transport equations
- 8.3.2 Standard finite-volume schemes for moments
- 8.3.3 Realizable finite-volume schemes for moments
- 8.3.4 Example results for an inhomogeneous PBE
- 8.4 Inhomogeneous KE
- 8.4.1 The moment-transport equation
- 8.4.2 Operator splitting for moment equations
- 8.4.3 A realizable finite-volume scheme for bivariatevelocity moments
- 8.4.4 Example results for an inhomogeneous KE
- 8.5 Inhomogeneous GPBE
- 8.5.1 Classes of GPBE
- 8.5.2 Spatial transport with known scalar-dependent velocity
- 8.5.3 Example results with known scalar-dependent velocity
- 8.5.4 Spatial transport with scalar-conditioned velocity
- 8.5.5 Example results with scalar-conditioned velocity
- 8.5.6 Spatial transport of the velocity-scalar NDF
- 8.6 Concluding remarks
- Appendix A Moment-inversion algorithms
- A.1 Univariate quadrature
- A.1.1 The PD algorithm
- A.1.2 The adaptive Wheeler algorithm
- A.2 Moment-correction algorithms
- A.2.1 The correction algorithm of McGraw
- A.2.2 The correction algorithm of Wright
- A.3 Multivariate quadrature
- A.3.1 Brute-force QMOM
- A.3.2 Tensor-product QMOM
- A.3.3 The CQMOM
- A.4 The EQMOM.
- A.4.1 Beta EQMOM
- A.4.2 Gamma EQMOM
- A.4.3 Gaussian EQMOM
- Appendix B Kinetics-based finite-volume methods
- B.1 Spatial dependence of GPBE
- B.2 Realizable FVM
- B.3 Advection
- B.4 Free transport
- B.5 Mixed advection
- B.6 Diffusion
- Appendix C Moment methods with hyperbolic equations
- C.1 A model kinetic equation
- C.2 Analytical solution for segregated initial conditions
- C.2.1 Segregating solution
- C.2.2 Mixing solution
- C.3 Moments and the quadrature approximation
- C.3.1 Moments of segregating solution
- C.3.2 Moments of mixing solution
- C.4 Application of QBMM
- C.4.1 The moment-transport equation
- C.4.2 Transport equations for weights and abscissas
- Appendix D The direct quadrature method of moments fully conservative
- D.1 Inhomogeneous PBE
- D.2 Standard DQMOM
- D.3 DQMOM-FC
- D.4 Time integration
- References
- Index.