Cargando…

Computational physics of electric discharges in gas flows /

Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This worktreats methods of computational modeling of e...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Surzhikov, S. T. (Sergeĭ Timofeevich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2012]
Colección:De Gruyter studies in mathematical physics ; 7.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 KNOVEL_ocn829233335
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 130307s2012 gw ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d MHW  |d YDXCP  |d OCLCO  |d OCLCF  |d OCLCQ  |d KNOVL  |d E7B  |d DKDLA  |d COO  |d ZCU  |d DEBSZ  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d UAB  |d MOR  |d LIP  |d PIFAG  |d MERUC  |d OCLCQ  |d DEGRU  |d OCLCQ  |d VTS  |d CEF  |d ICG  |d OCLCQ  |d AU@  |d OCLCQ  |d STF  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d ERF  |d OCLCQ  |d K6U  |d U9X  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AUD  |d OCLCO 
019 |a 847644639  |a 900409036  |a 961552693  |a 962687143  |a 966261433  |a 974764769  |a 974850437  |a 987722377  |a 988415513  |a 990609714  |a 992039008 
020 |a 9783110270419  |q (electronic bk.) 
020 |a 3110270412  |q (electronic bk.) 
020 |a 9781680152111  |q (electronic bk.) 
020 |a 1680152114  |q (electronic bk.) 
020 |z 9783110270334 
020 |z 3110270331 
020 |z 9783110270426 
020 |z 3110270420 
029 1 |a AU@  |b 000053309440 
029 1 |a DEBBG  |b BV043091829 
029 1 |a DEBBG  |b BV044164190 
029 1 |a DEBSZ  |b 42127347X 
029 1 |a DEBSZ  |b 43113071X 
029 1 |a NZ1  |b 15592305 
035 |a (OCoLC)829233335  |z (OCoLC)847644639  |z (OCoLC)900409036  |z (OCoLC)961552693  |z (OCoLC)962687143  |z (OCoLC)966261433  |z (OCoLC)974764769  |z (OCoLC)974850437  |z (OCoLC)987722377  |z (OCoLC)988415513  |z (OCoLC)990609714  |z (OCoLC)992039008 
050 4 |a QC711.8.G5  |b C66 2012eb 
072 7 |a QC  |2 lcco 
072 7 |a QA  |2 lcco 
072 7 |a SCI  |x 021000  |2 bisacsh 
072 7 |a SCI  |x 022000  |2 bisacsh 
082 0 4 |a 537.5/30151  |2 23 
084 |a UG 1300  |2 rvk 
049 |a UAMI 
245 0 0 |a Computational physics of electric discharges in gas flows /  |c edited by Sergey T. Surzhikov. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2012] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter studies in mathematical physics ;  |v 7 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Gas discharges are of interest for many processes in mechanics, manufacturing, materials science and aerophysics. To understand the physics behind the phenomena is of key importance for the effective use and development of gas discharge devices. This worktreats methods of computational modeling of electrodischarge processes and dynamics of partially ionized gases. These methods are necessary to tackleproblems of physical mechanics, physics of gas discharges and aerophysics. Particular attention is given to a solution of two-dimensional problems of physical mechanics of glow discharges. The use o. 
505 0 |a Preface; I Elements of the theory of numerical modeling of gas-discharge phenomena; 1 Models of gas-discharge physical mechanics; 1.1 Models of homogeneous chemically equilibrium plasma; 1.1.1 Mathematical model of radio-frequency (RF) plasma generator; 1.1.2 Mathematical model of electric-arc (EA) plasma generator; 1.1.3 Models of micro-wave (MW) plasma generators; 1.1.4 Models of laser supported plasma generators (LSPG); 1.1.5 Numerical simulation models of steady-state radiative gas dynamics of RF-, EA-, MW-, and LSW-plasma generators. 
505 8 |a 1.1.6 Method of numerical simulation of non-stationary radiative gas-dynamic processes in subsonic plasma flows. The method of unsteady dynamic variables1.2 Models of nonuniform chemically equilibrium and nonequilibrium plasma; 1.2.1 Model of the five-component RF plasma generator; 1.2.2 Model of the three-component RF plasma generator; 1.2.3 Two-temperature model of RF plasma under ionization equilibrium; 1.2.4 One-liquid two-temperature model of laser supported plasma; 2 Application of numerical simulation models for the investigation of laser supported waves. 
505 8 |a 2.1 Air laser supported plasma generator2.2 Hydrogen laser supported plasma generator; 2.3 Bifurcation of subsonic gas flows in the vicinity of localized heat release regions; 2.3.1 Statement of the problem; 2.3.2 Qualitative analysis of the phenomenon; 2.3.3 Quantitative results of numerical simulation; 2.4 Laser supported waves in the field of gravity; 3 Computational models of magnetohydrodynamic processes; 3.1 General relations; 3.2 Vector form of Navier-Stokes equations; 3.3 System of equations of magnetic induction; 3.4 Force acting on ionized gas from electric and magnetic fields. 
505 8 |a 3.5 A heat emission caused by action of electromagnetic forces3.6 Complete set of the MHD equations in a flux form; 3.6.1 The MHD equations in projections; 3.6.2 Completely conservative form of the MHD equations; 3.7 The flux form of MHD equations in a dimensionless form; 3.7.1 Definition of the normalizing parameters; 3.7.2 Nondimension system of the MHD equations in flux form; 3.8 The MHD equations in the flux form. The use of pressure instead of specific internal energy. 
505 8 |a 3.9 Eigenvectors and eigenvalues of Jacobian matrixes for transformation of the MHD equations from conservative to the quasilinear form. Statement of nonstationary boundary conditions3.9.1 Jacobian matrixes of passage from conservative to the quasilinear form of the equations; 3.10 A singularity of Jacobian matrixes for transformation of the equations formulated in the conservative form; 3.11 System of the MHD equations without singular transfer matrixes; 3.12 Eigenvalues and eigenvectors of nonsingular matrixes of quasilinear system of the MHD equations; 3.12.1 Matrix Ãx; 3.12.2 Matrix Ãy. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a Knovel  |b ACADEMIC - Chemistry & Chemical Engineering 
650 0 |a Glow discharges. 
650 0 |a Electric discharges through gases. 
650 6 |a Décharges luminescentes. 
650 6 |a Décharges électriques dans les gaz. 
650 7 |a SCIENCE  |x Physics  |x Electricity.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x Electromagnetism.  |2 bisacsh 
650 7 |a Electric discharges through gases  |2 fast 
650 7 |a Glow discharges  |2 fast 
700 1 |a Surzhikov, S. T.  |q (Sergeĭ Timofeevich) 
776 0 8 |i Print version:  |t Computational physics of electric discharges in gas flows.  |d Berlin ; Boston : De Gruyter, [2012]  |z 9783110270334  |w (DLC) 2012039344  |w (OCoLC)798612653 
830 0 |a De Gruyter studies in mathematical physics ;  |v 7. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpCPEDGF05/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25311877 
938 |a De Gruyter  |b DEGR  |n 9783110270419 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL894134 
938 |a ebrary  |b EBRY  |n ebr10661425 
938 |a EBSCOhost  |b EBSC  |n 543961 
938 |a YBP Library Services  |b YANK  |n 10227888 
994 |a 92  |b IZTAP