Stress corrosion cracking of pipelines /
BExplains why pipeline stress corrosion cracking happens and how it can be prevented/b/ Pipelines sit at the heart of the global economy. When they are in good working order, they deliver fuel to meet the ever-growing demand for energy around the world. When they fail due to stress corrosion crackin...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc.,
[2013]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Stress Corrosion Cracking of Pipelines; Contents; Foreword; Preface; List of Abbreviations and Symbols; 1 Introduction; 1.1 Pipelines as "Energy Highways"; 1.2 Pipeline Safety and Integrity Management; 1.3 Pipeline Stress Corrosion Cracking; References; 2 Fundamentals of Stress Corrosion Cracking; 2.1 Definition of Stress Corrosion Cracking; 2.2 Specific Metal-Environment Combinations; 2.3 Metallurgical Aspects of SCC; 2.3.1 Effect of Strength of Materials on SCC; 2.3.2 Effect of Alloying Composition on SCC; 2.3.3 Effect of Heat Treatment on SCC; 2.3.4 Grain Boundary Precipitation.
- 2.3.5 Grain Boundary Segregation2.4 Electrochemistry of SCC; 2.4.1 SCC Thermodynamics; 2.4.2 SCC Kinetics; 2.5 SCC Mechanisms; 2.5.1 SCC Initiation Mechanisms; 2.5.2 Dissolution-Based SCC Propagation; 2.5.3 Mechanical Fracture-Based SCC Propagation; 2.6 Effects of Hydrogen on SCC and Hydrogen Damage; 2.6.1 Sources of Hydrogen; 2.6.2 Characteristics of Hydrogen in Metals; 2.6.3 The Hydrogen Effect; 2.6.4 Mechanisms of Hydrogen Damage; 2.7 Role of Microorganisms in SCC; 2.7.1 Microbially Influenced Corrosion; 2.7.2 Microorganisms Involved in MIC; 2.7.3 Role of MIC in SCC Processes.
- 2.8 Corrosion Fatigue2.8.1 Features of Fatigue Failure; 2.8.2 Features of Corrosion Fatigue; 2.8.3 Factors Affecting CF and CF Management; 2.9 Comparison of SCC, HIC, and CF; References; 3 Understanding Pipeline Stress Corrosion Cracking; 3.1 Introduction; 3.2 Practical Case History of SCC in Pipelines; 3.2.1 Case 1: SCC of Enbridge Glenavon Pipelines (SCC in an Oil Pipeline); 3.2.2 Case 2: SCC of Williams Lake Pipelines (SCC in a Gas Pipeline); 3.3 General Features of Pipeline SCC; 3.3.1 High-pH SCC of Pipelines; 3.3.2 Nearly Neutral-pH SCC of Pipelines; 3.3.3 Cracking Characteristics.
- 3.4 Conditions for Pipeline SCC3.4.1 Corrosive Environments; 3.4.2 Susceptible Line Pipe Steels; 3.4.3 Stress; 3.5 Role of Pressure Fluctuation in Pipelines: SCC or Corrosion Fatigue?; References; 4 Nearly Neutral-pH Stress Corrosion Cracking of Pipelines; 4.1 Introduction; 4.2 Primary Characteristics; 4.3 Contributing Factors; 4.3.1 Coatings; 4.3.2 Cathodic Protection; 4.3.3 Soil Characteristics; 4.3.4 Microorganisms; 4.3.5 Temperature; 4.3.6 Stress; 4.3.7 Steel Metallurgy; 4.4 Initiation of Stress Corrosion Cracks from Corrosion Pits; 4.5 Stress Corrosion Crack Propagation Mechanism.
- 4.5.1 Role of Hydrogen in Enhanced Corrosion of Steels4.5.2 Potential-Dependent Nearly Neutral-pH SCC of Pipelines; 4.5.3 Pipeline Steels in Nearly Neutral-pH Solutions: Always Active Dissolution?; 4.6 Models for Prediction of Nearly Neutral-pH SCC Propagation; References; 5 High-pH Stress Corrosion Cracking of Pipelines; 5.1 Introduction; 5.2 Primary Characteristics; 5.3 Contributing Factors; 5.3.1 Coatings; 5.3.2 Cathodic Protection; 5.3.3 Soil Characteristics; 5.3.4 Microorganisms; 5.3.5 Temperature; 5.3.6 Stress; 5.3.7 Metallurgies; 5.4 Mechanisms for Stress Corrosion Crack Initiation.