Cargando…

Fatigue design of steel and composite structures. Eurocode 3, Design of steel structures part 1-9-- fatigue. Eurocode 4, Design of composite steel and concrete structures /

This volume addresses the specific subject of fatigue, a subject not familiar to many engineers, but still relevant for proper and good design of numerous steel structures. It explains all issues related to the subject: Basis of fatigue design, reliability and various verification formats, determina...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nussbaumer, Alain, 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berlin] : ECCS, 2011.
Edición:1st ed.
Colección:ECCS Eurocode design manuals.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1 Introduction
  • 1.1.Basis of fatigue design in steel structures
  • 1.1.1.General
  • 1.1.2.Main parameters influencing fatigue life
  • 1.1.3.Expression of fatigue strength
  • 1.1.4.Variable amplitude and cycle counting
  • 1.1.5.Damage accumulation
  • 1.2.Damage equivalent factor concept
  • 1.3.Codes of practice
  • 1.3.1.Introduction
  • 1.3.2.Eurocodes 3 and 4
  • 1.3.3.Eurocode 9
  • 1.3.4.Execution (EN 1090-2)
  • 1.3.5.Other execution standards
  • 1.4.Description of the structures used in the worked examples
  • 1.4.1.Introduction
  • 1.4.2.Steel and concrete composite road bridge (worked example 1)
  • 1.4.2.1.Longitudinal elevation and transverse cross section
  • 1.4.2.2.Materials and structural steel distribution
  • 1.4.2.3.The construction stages
  • 1.4.3.Chimney (worked example 2)
  • 1.4.3.1.Introduction
  • 1.4.3.2.General characteristics of the chimney
  • 1.4.3.3.Dimensions of socket joint located at +11.490 m
  • 1.4.3.4.Dimensions of ground plate joint with welded stiffeners located at the bottom, at +0.350m
  • 1.4.3.5.Dimensions of manhole located between +1.000 m and +2.200 m
  • 1.4.4.Crane supporting structures (worked example 3)
  • 1.4.4.1.Introduction
  • 1.4.4.2.Actions to be considered
  • ch. 2 Application Range And Limitations
  • 2.1.Introduction
  • 2.2.Materials
  • 2.3.Corrosion
  • 2.4.Temperature
  • 2.5.Loading rate
  • 2.6.Limiting stress ranges
  • ch. 3 Determination Of Stresses And Stress Ranges
  • 3.1.Fatigue loads
  • 3.1.1.Introduction
  • 3.1.2.Road Bridges
  • 3.1.2.1.Fatigue load model 1 (FLM1)
  • 3.1.2.2.Fatigue load model 2 (FLM2)
  • 3.1.2.3.Fatigue load model 3 (FLM3)
  • 3.1.2.4.Fatigue load model 4 (FLM4)
  • 3.1.2.5.Fatigue load model 5 (FLM5)
  • 3.1.3.Railway bridges
  • 3.1.4.Crane supporting structures
  • 3.1.5.Masts, towers and chimneys
  • 3.1.6.Silos and tanks
  • 3.1.7.Tensile cable structures, tension components
  • 3.1.8.Other structures
  • 3.2.Damage equivalent factors
  • 3.2.1.Concept
  • 3.2.2.Critical influence line lenght
  • 3.2.3.Road bridges
  • 3.2.4.Railway bridges
  • 3.2.5.Crane supporting structures
  • 3.2.6.Towers, masts and chimneys
  • 3.3.Calculation of stresses
  • 3.3.1.Introduction
  • 3.3.2.Relevant nominal stresses
  • 3.3.3.Stresses in bolted joints
  • 3.3.4.Stresses in welds
  • 3.3.5.Nominal stresses in steel and concrete composite bridges
  • 3.3.6.Nominal stresses in tubular structures (frames and trusses)
  • 3.4.Modified nominal stresses and concentration factors
  • 3.4.1.Generalities
  • 3.4.2.Misalignments
  • 3.5.Geometric stresses (Structural stress at the hot spot)
  • 3.5.1.Introduction
  • 3.5.2.Determination using FEM modelling
  • 3.5.3.Determination using formulas
  • 3.6.Stresses in orthotropic decks
  • 3.7.Calculation of stress ranges
  • 3.7.1.Introduction
  • 3.7.2.Stress range in non-welded details
  • 3.7.3.Stress range in bolted joints
  • 3.7.4.Stress range in welds
  • 3.7.5.Multiaxial stress range cases
  • 3.7.5.1.Introduction
  • 3.7.5.2.Possible stress range cases
  • 3.7.5.3.Proportional and non-proportional normal stress ranges
  • 3.7.5.4.Non-proportional normal and shear stress ranges
  • 3.7.6.Stress ranges in steel and concrete composite structures
  • 3.7.7.Stress ranges in connection devices from steel and concrete composite structures
  • 3.8.Modified nominal stress ranges
  • 3.9.Geometric stress ranges
  • ch. 4 Fatigue Strength
  • 4.1.Introduction
  • 4.1.1.Set of fatigue strength curves
  • 4.1.2.Modified fatigue strength curves
  • 4.1.3.Size effects on fatigue strength
  • 4.1.4.Mean stress influence
  • 4.1.5.Post-weld improvements
  • 4.2.Fatigue detail tables
  • 4.2.1.Introduction
  • 4.2.2.Non-welded details classification (EN 1993-1-9, Table 8.1)
  • 4.2.3.Welded plated details classification (general comments)
  • 4.2.4.Longitudinal welds, (built-up sections, EN 1993-1-9 Table 8.2), including longitudinal butt welds
  • 4.2.5.Transverse but welds (EN 1993-1-9 Table 8.3)
  • 4.2.6.Welded attachments and stiffeners (EN 1993-1-9 Table 8.4) and load-carrying welded joints (EN 1993-1-9 Table 8.5)
  • 4.2.7.Welded tubular details classification (EN 1993-1-9 Tables 8.6 and 8.7)
  • 4.2.8.Orthotopic deck details classification (EN 1993-1-9 Tables 8.8 and 8.9)
  • 4.2.9.Crane girder details (EN 1993-1-9 Table 8.10)
  • 4.2.10.Tension components details (EN 1993-1-11)
  • 4.2.11.Geometric stress categories (EN 1993-1-9, Annex B, Table B.1)
  • 4.2.12.Particular case of web breathing, plate slenderness limitations
  • 4.3.Determination of fatigue strength or life by testing
  • ch. 5 Reliability And Verification
  • 5.1.Generalities
  • 5.2.Strategies
  • 5.2.1.Safe life
  • 5.2.2.Damage tolerant
  • 5.3.Partial factors
  • 5.3.1.Introduction
  • 5.3.2.Action effects partial factor
  • 5.3.3.Strength partial factor
  • 5.4.Verification
  • 5.4.1.Introduction
  • 5.4.2.Verification using the fatigue limit
  • 5.4.3.Verification using damage equivalent factors
  • 5.4.4.Verification using damage accumulation method
  • 5.4.5.Verification of tension components
  • 5.4.6.Verification using damage accumulation in case of two or more cranes
  • 5.4.7.Verification under multiaxial stress ranges
  • 5.4.7.1.Original interaction criteria
  • 5.4.7.2.General interaction criteria in EN 1993
  • 5.4.7.3.Special case of biaxial normal stresses and shear stress ranges
  • 5.4.7.4.Interaction criteria in EN 1994, welded studs
  • ch. 6 Brittle Fracture
  • 6.1.Introduction
  • 6.2.Steel quality
  • 6.3.Relationship between different fracture toughness test results
  • 6.4.Fracture concept in EN 1993-1-10
  • 6.4.1.Method for toughness verification
  • 6.4.2.Method for safety verification
  • 6.4.3.Flaw size design value
  • 6.4.4.Design value of the action effect stresses
  • 6.5.Standardisation of choice of material: maximum allowable thicknesses
  • REFERENCES
  • Annex A STANDARDS FOR STEEL CONSTRUCTION
  • Annex B FATIGUE DETAIL TABLES WITH COMMENTARY
  • Introduction
  • B.1.Plain members and mechanically fastened joints (EN 1993-1-9, Table 8.1)
  • B.2.Welded built-up sections (EN 1993-1-9, Table 8.2)
  • B.3.Transverse butt welds (EN 1993-1-9, Table 8.3)
  • B.4.Attachments and stiffeners (EN 1993-1-9, Table 8.4)
  • B.5.Load carrying welded joints (EN 1993-1-9, Table 8.5)
  • B.6.Hollow sections (T[≤]12.5 mm) (EN 1993-1-9, Table 8.6)
  • B.7.Lattice girder node joints (EN 1993-1-9, Table 8.7)
  • B.8.Orthotropic decks
  • closed stringers (EN 1993-1-9, Table 8.8)
  • B.9.Orthotropic decks
  • open stringers (EN 1993-1-9, Table 8.9)
  • B.10.Top flange to web junction of runway beams (En 1993-1-9, Table 8.10)
  • B.11.Detail categories for use with geometric (hot spot) stress method (EN 1993-1-9, Table B.1)
  • B.12.Tension components
  • B.13.Review of orthotropic decks details and structural analysis
  • Annex C MAXIMUM PERMISSIBLE THICKNESS TABLES
  • Introduction
  • C.1.Maximum permissible values of element thickness t in mm (EN 1993-1-10, Table 2.1).