Cargando…

Coaxial electrical circuits for interference-free measurements /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Awan, Shakil, 1971-
Otros Autores: Schurr, Jürgen, 1962-, Kibble, B. P.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Institution of Engineering and Technology, 2011.
Colección:IET electrical measurement series ; 13.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 KNOVEL_ocn761013886
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cn|||||||||
008 111115s2011 enka ob 001 0 eng d
040 |a KNOVL  |b eng  |e pn  |c KNOVL  |d VLB  |d AZU  |d CEF  |d E7B  |d N$T  |d DEBSZ  |d ZCU  |d OCLCQ  |d IUL  |d OCLCQ  |d Z#U  |d CUS  |d OCLCQ  |d YDXCP  |d DEBBG  |d KNOVL  |d REB  |d KNOVL  |d VT2  |d OCLCF  |d OCLCQ  |d OCL  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d RRP  |d OCLCQ  |d AU@  |d WYU  |d YOU  |d STF  |d M8D  |d OCLCQ  |d ERF  |d LVT  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB056403  |2 bnb 
016 7 |a 015541810  |2 Uk 
019 |a 759386486  |a 759389926  |a 898031090  |a 898067256  |a 961882742  |a 988635744  |a 999408579  |a 1026445767  |a 1065832913  |a 1086928615  |a 1229778333 
020 |a 9781613443149  |q (electronic bk.) 
020 |a 1613443145  |q (electronic bk.) 
020 |a 9781849190701  |q (electronic bk.) 
020 |a 1849190704  |q (electronic bk.) 
020 |z 9781849190695 
020 |z 1849190690 
024 8 |a 9786613253392 
029 1 |a AU@  |b 000048592939 
029 1 |a AU@  |b 000051430732 
029 1 |a DEBBG  |b BV043134445 
029 1 |a DEBSZ  |b 354719211 
029 1 |a DEBSZ  |b 372822908 
029 1 |a DEBSZ  |b 421554967 
029 1 |a GBVCP  |b 803704402 
029 1 |a NZ1  |b 14231887 
029 1 |a NZ1  |b 15621993 
035 |a (OCoLC)761013886  |z (OCoLC)759386486  |z (OCoLC)759389926  |z (OCoLC)898031090  |z (OCoLC)898067256  |z (OCoLC)961882742  |z (OCoLC)988635744  |z (OCoLC)999408579  |z (OCoLC)1026445767  |z (OCoLC)1065832913  |z (OCoLC)1086928615  |z (OCoLC)1229778333 
037 |b Knovel Corporation  |n http://www.knovel.com 
050 4 |a TK275  |b .A93 2011eb 
072 7 |a TEC  |x 007000  |2 bisacsh 
082 0 4 |a 621.37  |2 23 
049 |a UAMI 
100 1 |a Awan, Shakil,  |d 1971- 
245 1 0 |a Coaxial electrical circuits for interference-free measurements /  |c Shakil Awan, Bryan Kibble and Jürgen Schurr. 
260 |a London :  |b Institution of Engineering and Technology,  |c 2011. 
300 |a 1 online resource (xxvi, 321 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET electrical measurement series ;  |v 13 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 8 |a Annotation  |b This title offers guidance and best practice in electrical measurements applicable to any required accuracy level. 
505 0 |a Machine generated contents note: 1.1. Interactions between circuits[-]eliminating electrical interference -- 1.1.1. Basic principles -- 1.1.2. An illustrative example[-]using a phase-sensitive detector -- 1.1.3. Diagnostic equipment -- 1.1.4. Isolation -- 1.1.5. Totally isolating transformers and power supplies -- 1.1.6. Isolating a noisy instrument -- 1.1.7. The available methods for isolating outputs -- 1.1.8. Balancing -- 1.1.9. Minimising the effects of insufficiently isolated commercial instruments -- 1.1.10. The 'traditional' approach to DC and low-frequency circuitry versus the current-balanced conductor-pair coaxial approach -- 1.1.11. Thermoelectric emfs -- 1.1.12. Designing temperature-controlled enclosures -- 1.1.13. Ionising radiation (cosmic rays, etc.) -- 1.1.14. Final remarks -- References -- 2.1. General principles -- 2.1.1. The output impedance of a network affects detector sensitivity -- 2.1.2. The sensitivity of detectors to harmonic content 
505 0 |a Note continued: 2.1.3. Noise and noise matching a detector to a network -- 2.1.4. The concept of a noise figure -- 2.2. Attributes of sources -- 2.3. Properties of different detectors -- 2.3.1. Preamplifiers -- 2.3.2. Wideband (untuned) detectors -- 2.3.3. Narrowband (tuned) detectors -- 2.3.4. Phase-sensitive detectors that employ a switching technique -- 2.3.5. Phase-sensitive detectors employing a modulating technique -- 2.4. Cables and connectors -- References -- 3.1. The coaxial conductor -- 3.1.1. Achieving current equalisation -- 3.1.2. The concept of a coaxial network -- 3.2. Construction and properties of coaxial networks -- 3.2.1. Equalisers in bridge or other measuring networks -- 3.2.2. Assessing the efficiency of current equalisers -- 3.2.3. Single conductors added to an equalised network -- 3.2.4. Other conductor systems having similar properties -- 3.2.5. DC networks -- 3.2.6. The effect of a length of cable on a measured value -- 3.2.7. Tri-axial cable -- References 
505 0 |a Note continued: 4.1. Improvements in defining what is to be observed or measured -- 4.1.1. Ratio devices -- 4.1.2. Impedance standards -- 4.1.3. Formal representation of circuit diagrams and components -- 5.1. The evolution of a coaxial bridge -- 5.1.1.A simple coaxial bridge as an example of a coaxial network -- 5.2. The validity of lumped component representations -- 5.3. General principles applying to all impedance standards -- 5.3.1. The physical definition of a standard -- 5.3.2. The electrical definition of a standard impedance -- 5.3.3. Two-terminal definition -- 5.3.4. Four-terminal definition -- 5.3.5. Four-terminal coaxial definition -- 5.3.6. Two-terminal-pair definition -- 5.3.7. Three-terminal definition -- 5.3.8. Four-terminal-pair definition -- 5.3.9. Measuring four-terminal-pair admittances in a two-terminal-pair bridge by extrapolation -- 5.3.10. Adaptors to convert a two- or four-terminal definition to a four-terminal-pair definition 
505 0 |a Note continued: 5.4. The effect of cables connected to the ports of impedance standards -- 5.4.1. The effect of cables on a two-terminal component -- 5.4.2. The effect of cables on a four-terminal coaxial component -- 5.4.3. The effect of cables on a two-terminal-pair component -- 5.4.4. The effect of cables on a four-terminal-pair component -- 5.5. An analysis of conductor-pair bridges to show how the effect of shunt admittances can be eliminated -- 5.5.1.Comparing direct admittances using voltage sources -- 5.6.Combining networks to eliminate the effect of unwanted potential differences -- 5.6.1. The concept of a combining network -- 5.6.2.A general purpose AC combining network and current source -- 5.7. Connecting two-terminal-pair impedances in parallel -- References -- 6.1. The history of impedance standards -- 6.2. The Thompson[-]Lampard theorem -- 6.3. Primary standards of phase angle -- 6.4. Impedance components in general -- 6.4.1. Capacitors 
505 0 |a Note continued: 6.4.2. Parallel-plate capacitance standard -- 6.4.3. Two-terminal capacitors -- 6.4.4. Three-terminal capacitors -- 6.4.5. Two- and four-terminal-pair capacitors -- 6.4.6. The mechanical construction and properties of various types of capacitors -- 6.4.7. Capacitance standards of greater than 1 [æ]F -- 6.4.8. Voltage dependence of capacitors -- 6.4.9. Resistors -- 6.4.10.T-networks -- 6.4.11. Adding auxiliary components to resistors to reduce their reactive component -- 6.4.12. Mutual inductors: Campbell's calculable mutual inductance standard -- 6.4.13. Self-inductors -- 6.5. Resistors, capacitors and inductors of calculable frequency dependence -- 6.5.1. Resistance standards -- 6.5.2. Haddad coaxial resistance standard -- 6.5.3.A nearly ideal HF calculable coaxial resistance standard -- 6.5.4.A bifilar resistance standard -- 6.5.5. Gibbings quadrifilar resistance standard -- 6.5.6. Bohácek and Wood octofilar resistance standard 
505 0 |a Note continued: 6.5.7. HF secondary resistance standards -- 6.5.8. HF parallel-plate capacitance standard -- 6.5.9. HF calculable coaxial capacitance standard -- 6.5.10. HF calculable coaxial inductance standard -- 6.5.11.A frequency-independent standard of impedance -- 6.5.12. An ideal standard of impedance of calculable frequency dependence -- 6.6. Quantum Hall resistance -- 6.6.1. Properties of the quantum Hall effect (QHE) and its use as a DC resistance standard -- 6.6.2. The properties and the equivalent circuit of a quantum Hall device -- 6.6.3. Device handling -- 6.7. QHE measured with AC -- 6.7.1. Multiple-series connection scheme -- 6.7.2.A device holder and coaxial leads -- 6.7.3. Active equalisers -- 6.7.4. Capacitive model of ungated and split-gated quantum Hall devices -- 6.7.5. Ungated quantum Hall devices -- 6.7.6. Split-gated quantum Hall devices -- 6.7.7. Double-shielded device -- References -- 7.1. General considerations 
505 0 |a Note continued: 7.1.1. The causes of departure from an ideal transformer -- 7.1.2. The magnetic core -- 7.1.3. The windings; the effect of leakage inductances, capacitances and resistances -- 7.1.4. Representation of a non-ideal transformer: the effect of loading on its ratio windings -- 7.1.5. The two-stage principle -- 7.1.6. Electrical screens between windings -- 7.2. Constructional techniques -- 7.2.1. Design of transformer windings -- 7.2.2. Techniques for minimising the effect of leakage inductance, winding resistance and the capacitances of ratio windings -- 7.2.3. Bifilar winding -- 7.2.4. Rope winding having randomly arranged strands -- 7.2.5. Ordered rope winding -- 7.2.6. Magnetic and electric screens -- 7.2.7. Testing the attainment of a nearly toroidal field -- 7.2.8. Connections to the output ports -- 7.3. Types of transformers -- 7.3.1. Inductive voltage dividers -- 7.3.2. Two-staged IVDs -- 7.3.3. Injection and detection transformers 
505 0 |a Note continued: 7.3.4. Use of an injection transformer as a small voltage source -- 7.3.5. Use of an injection transformer as a detector of zero current -- 7.3.6. Calibration of injection transformers and their associated phase change circuits -- 7.3.7. Voltage ratio transformers -- 7.3.8. Two-stage construction -- 7.3.9. Matching transformers -- 7.3.10. Current ratio transformers -- 7.3.11. High-frequency construction -- 7.4. Calibration of transformers -- 7.4.1. Calibrating an IVD in terms of a fixed-ratio transformer -- 7.4.2. Calibrating voltage ratio transformers using a calibration transformer with a single output voltage -- 7.4.3. Calibration with a 1:-1 ratio transformer -- 7.4.4. The bridge circuit and details of the shielding -- 7.4.5. The balancing procedure -- 7.4.6. Calibrating voltage transformers by permuting capacitors in a bridge -- 7.4.7. Calibration of current transformers -- 7.4.8. Assessing the effectiveness of current equalisers -- References 
505 0 |a Note continued: 8.1. Designing bridge networks -- 8.1.1. Applying coaxial techniques to classical single-conductor bridges -- 8.1.2. Placement of current equalisers -- 8.1.3. Wagner circuit (and when it is applicable) -- 8.1.4. Convergence -- 8.1.5. Moving a detector to other ports in a bridge network -- 8.1.6.T-connecting shunt impedances for balance adjustment -- 8.1.7. Role of electronics in bridge design -- 8.1.8. Automating bridge networks -- 8.1.9. Higher-frequency networks -- 8.1.10. Tests of the accuracy of bridges -- References -- 9.1. Bridges to measure the ratio of like impedances -- 9.1.1.A two-terminal IVD bridge -- 9.1.2.A two-terminal-pair IVD bridge -- 9.1.3.A four-terminal-pair IVD bridge -- 9.1.4.A two-terminal-pair bridge based on a 10:-1 voltage ratio transformer -- 9.1.5.A four-terminal-pair bridge based on a two-stage 10:-1 voltage ratio transformer -- 9.1.6. Equal-power resistance bridge -- 9.2. Bridges to measure the ratio of unlike impedances 
505 0 |a Note continued: 9.2.1.R-C: the quadrature bridge -- 9.2.2. The quadrature bridge-a two-terminal-pair design -- 9.2.3. The quadrature bridge-a four-terminal-pair design -- 9.2.4. Bridges for measuring inductance -- 9.3. AC measurement of quantum Hall resistance -- 9.3.1. AC contact resistance -- 9.3.2. AC longitudinal resistance -- 9.3.3. Measuring RxxLo -- 9.3.4. Measuring RxxHi -- 9.3.5.A simple coaxial bridge for measuring non-decade capacitances -- 9.3.6. Coaxial resistance ratio bridges involving quantum Hall devices -- 9.3.7.A quadrature bridge with two quantum Hall devices -- 9.4. High-frequency networks -- 9.4.1. An IVD-based bridge for comparing 10:1 ratios of impedance from 10 kHz to 1 MHz -- 9.4.2.A bridge for measuring impedance from 10 kHz to 1 MHz based on a 10:-1 voltage ratio transformer -- 9.4.3. Quasi-four-terminal-pair 1:1 and 10:1 ratio bridges for comparing similar impedances from 0.5 to 10 MHz -- 9.4.4.A four-terminal-pair 10-MHz 1:1 resistance ratio bridge 
505 0 |a Note continued: 9.4.5.A 1.6- and 16-MHz quadrature bridge -- 9.4.6. Four-terminal-pair resonance frequency measurement of capacitors -- 9.4.7. Scattering parameter measurements and the link to microwave measurements -- 9.4.8. Electronic four-terminal-pair impedance-measuring instruments -- References -- 10.1. Resistance thermometry (DC and low-frequency AC) -- 10.1.1. DC resistance thermometry -- 10.1.2. AC resistance thermometry -- 10.2. Superconducting cryogenic current comparator -- 10.2.1. Determining the DC ratio of two resistances R1/R2 -- 10.3. Josephson voltage sources and accurate voltage measurement -- 10.4. Future directions -- 10.4.1. Higher-frequency measurements of quantum Hall resistance -- 10.4.2.Comparing calculable resistance standards up to 100 MHz with finite-element models -- 10.4.3. Radiofrequency and microwave measurements of carbon nanotubes and graphene -- References. 
590 |a Knovel  |b ACADEMIC - Electronics & Semiconductors 
650 0 |a Electric measurements. 
650 6 |a Mesures électriques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electrical.  |2 bisacsh 
650 7 |a Electric measurements  |2 fast 
700 1 |a Schurr, Jürgen,  |d 1962- 
700 1 |a Kibble, B. P. 
776 0 8 |i Print version:  |a Awan, Shakil.  |t Coaxial electrical circuits for interference-free measurements.  |d London : Institution of Engineering and Technology, 2011  |z 9781849190695  |w (OCoLC)724289644 
830 0 |a IET electrical measurement series ;  |v 13. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpCECIFM01/toc  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10497694 
938 |a EBSCOhost  |b EBSC  |n 385701 
938 |a YBP Library Services  |b YANK  |n 7050291 
994 |a 92  |b IZTAP