|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
KNOVEL_ocn761013886 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
111115s2011 enka ob 001 0 eng d |
040 |
|
|
|a KNOVL
|b eng
|e pn
|c KNOVL
|d VLB
|d AZU
|d CEF
|d E7B
|d N$T
|d DEBSZ
|d ZCU
|d OCLCQ
|d IUL
|d OCLCQ
|d Z#U
|d CUS
|d OCLCQ
|d YDXCP
|d DEBBG
|d KNOVL
|d REB
|d KNOVL
|d VT2
|d OCLCF
|d OCLCQ
|d OCL
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d RRP
|d OCLCQ
|d AU@
|d WYU
|d YOU
|d STF
|d M8D
|d OCLCQ
|d ERF
|d LVT
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB056403
|2 bnb
|
016 |
7 |
|
|a 015541810
|2 Uk
|
019 |
|
|
|a 759386486
|a 759389926
|a 898031090
|a 898067256
|a 961882742
|a 988635744
|a 999408579
|a 1026445767
|a 1065832913
|a 1086928615
|a 1229778333
|
020 |
|
|
|a 9781613443149
|q (electronic bk.)
|
020 |
|
|
|a 1613443145
|q (electronic bk.)
|
020 |
|
|
|a 9781849190701
|q (electronic bk.)
|
020 |
|
|
|a 1849190704
|q (electronic bk.)
|
020 |
|
|
|z 9781849190695
|
020 |
|
|
|z 1849190690
|
024 |
8 |
|
|a 9786613253392
|
029 |
1 |
|
|a AU@
|b 000048592939
|
029 |
1 |
|
|a AU@
|b 000051430732
|
029 |
1 |
|
|a DEBBG
|b BV043134445
|
029 |
1 |
|
|a DEBSZ
|b 354719211
|
029 |
1 |
|
|a DEBSZ
|b 372822908
|
029 |
1 |
|
|a DEBSZ
|b 421554967
|
029 |
1 |
|
|a GBVCP
|b 803704402
|
029 |
1 |
|
|a NZ1
|b 14231887
|
029 |
1 |
|
|a NZ1
|b 15621993
|
035 |
|
|
|a (OCoLC)761013886
|z (OCoLC)759386486
|z (OCoLC)759389926
|z (OCoLC)898031090
|z (OCoLC)898067256
|z (OCoLC)961882742
|z (OCoLC)988635744
|z (OCoLC)999408579
|z (OCoLC)1026445767
|z (OCoLC)1065832913
|z (OCoLC)1086928615
|z (OCoLC)1229778333
|
037 |
|
|
|b Knovel Corporation
|n http://www.knovel.com
|
050 |
|
4 |
|a TK275
|b .A93 2011eb
|
072 |
|
7 |
|a TEC
|x 007000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.37
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Awan, Shakil,
|d 1971-
|
245 |
1 |
0 |
|a Coaxial electrical circuits for interference-free measurements /
|c Shakil Awan, Bryan Kibble and Jürgen Schurr.
|
260 |
|
|
|a London :
|b Institution of Engineering and Technology,
|c 2011.
|
300 |
|
|
|a 1 online resource (xxvi, 321 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IET electrical measurement series ;
|v 13
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a Annotation
|b This title offers guidance and best practice in electrical measurements applicable to any required accuracy level.
|
505 |
0 |
|
|a Machine generated contents note: 1.1. Interactions between circuits[-]eliminating electrical interference -- 1.1.1. Basic principles -- 1.1.2. An illustrative example[-]using a phase-sensitive detector -- 1.1.3. Diagnostic equipment -- 1.1.4. Isolation -- 1.1.5. Totally isolating transformers and power supplies -- 1.1.6. Isolating a noisy instrument -- 1.1.7. The available methods for isolating outputs -- 1.1.8. Balancing -- 1.1.9. Minimising the effects of insufficiently isolated commercial instruments -- 1.1.10. The 'traditional' approach to DC and low-frequency circuitry versus the current-balanced conductor-pair coaxial approach -- 1.1.11. Thermoelectric emfs -- 1.1.12. Designing temperature-controlled enclosures -- 1.1.13. Ionising radiation (cosmic rays, etc.) -- 1.1.14. Final remarks -- References -- 2.1. General principles -- 2.1.1. The output impedance of a network affects detector sensitivity -- 2.1.2. The sensitivity of detectors to harmonic content
|
505 |
0 |
|
|a Note continued: 2.1.3. Noise and noise matching a detector to a network -- 2.1.4. The concept of a noise figure -- 2.2. Attributes of sources -- 2.3. Properties of different detectors -- 2.3.1. Preamplifiers -- 2.3.2. Wideband (untuned) detectors -- 2.3.3. Narrowband (tuned) detectors -- 2.3.4. Phase-sensitive detectors that employ a switching technique -- 2.3.5. Phase-sensitive detectors employing a modulating technique -- 2.4. Cables and connectors -- References -- 3.1. The coaxial conductor -- 3.1.1. Achieving current equalisation -- 3.1.2. The concept of a coaxial network -- 3.2. Construction and properties of coaxial networks -- 3.2.1. Equalisers in bridge or other measuring networks -- 3.2.2. Assessing the efficiency of current equalisers -- 3.2.3. Single conductors added to an equalised network -- 3.2.4. Other conductor systems having similar properties -- 3.2.5. DC networks -- 3.2.6. The effect of a length of cable on a measured value -- 3.2.7. Tri-axial cable -- References
|
505 |
0 |
|
|a Note continued: 4.1. Improvements in defining what is to be observed or measured -- 4.1.1. Ratio devices -- 4.1.2. Impedance standards -- 4.1.3. Formal representation of circuit diagrams and components -- 5.1. The evolution of a coaxial bridge -- 5.1.1.A simple coaxial bridge as an example of a coaxial network -- 5.2. The validity of lumped component representations -- 5.3. General principles applying to all impedance standards -- 5.3.1. The physical definition of a standard -- 5.3.2. The electrical definition of a standard impedance -- 5.3.3. Two-terminal definition -- 5.3.4. Four-terminal definition -- 5.3.5. Four-terminal coaxial definition -- 5.3.6. Two-terminal-pair definition -- 5.3.7. Three-terminal definition -- 5.3.8. Four-terminal-pair definition -- 5.3.9. Measuring four-terminal-pair admittances in a two-terminal-pair bridge by extrapolation -- 5.3.10. Adaptors to convert a two- or four-terminal definition to a four-terminal-pair definition
|
505 |
0 |
|
|a Note continued: 5.4. The effect of cables connected to the ports of impedance standards -- 5.4.1. The effect of cables on a two-terminal component -- 5.4.2. The effect of cables on a four-terminal coaxial component -- 5.4.3. The effect of cables on a two-terminal-pair component -- 5.4.4. The effect of cables on a four-terminal-pair component -- 5.5. An analysis of conductor-pair bridges to show how the effect of shunt admittances can be eliminated -- 5.5.1.Comparing direct admittances using voltage sources -- 5.6.Combining networks to eliminate the effect of unwanted potential differences -- 5.6.1. The concept of a combining network -- 5.6.2.A general purpose AC combining network and current source -- 5.7. Connecting two-terminal-pair impedances in parallel -- References -- 6.1. The history of impedance standards -- 6.2. The Thompson[-]Lampard theorem -- 6.3. Primary standards of phase angle -- 6.4. Impedance components in general -- 6.4.1. Capacitors
|
505 |
0 |
|
|a Note continued: 6.4.2. Parallel-plate capacitance standard -- 6.4.3. Two-terminal capacitors -- 6.4.4. Three-terminal capacitors -- 6.4.5. Two- and four-terminal-pair capacitors -- 6.4.6. The mechanical construction and properties of various types of capacitors -- 6.4.7. Capacitance standards of greater than 1 [æ]F -- 6.4.8. Voltage dependence of capacitors -- 6.4.9. Resistors -- 6.4.10.T-networks -- 6.4.11. Adding auxiliary components to resistors to reduce their reactive component -- 6.4.12. Mutual inductors: Campbell's calculable mutual inductance standard -- 6.4.13. Self-inductors -- 6.5. Resistors, capacitors and inductors of calculable frequency dependence -- 6.5.1. Resistance standards -- 6.5.2. Haddad coaxial resistance standard -- 6.5.3.A nearly ideal HF calculable coaxial resistance standard -- 6.5.4.A bifilar resistance standard -- 6.5.5. Gibbings quadrifilar resistance standard -- 6.5.6. Bohácek and Wood octofilar resistance standard
|
505 |
0 |
|
|a Note continued: 6.5.7. HF secondary resistance standards -- 6.5.8. HF parallel-plate capacitance standard -- 6.5.9. HF calculable coaxial capacitance standard -- 6.5.10. HF calculable coaxial inductance standard -- 6.5.11.A frequency-independent standard of impedance -- 6.5.12. An ideal standard of impedance of calculable frequency dependence -- 6.6. Quantum Hall resistance -- 6.6.1. Properties of the quantum Hall effect (QHE) and its use as a DC resistance standard -- 6.6.2. The properties and the equivalent circuit of a quantum Hall device -- 6.6.3. Device handling -- 6.7. QHE measured with AC -- 6.7.1. Multiple-series connection scheme -- 6.7.2.A device holder and coaxial leads -- 6.7.3. Active equalisers -- 6.7.4. Capacitive model of ungated and split-gated quantum Hall devices -- 6.7.5. Ungated quantum Hall devices -- 6.7.6. Split-gated quantum Hall devices -- 6.7.7. Double-shielded device -- References -- 7.1. General considerations
|
505 |
0 |
|
|a Note continued: 7.1.1. The causes of departure from an ideal transformer -- 7.1.2. The magnetic core -- 7.1.3. The windings; the effect of leakage inductances, capacitances and resistances -- 7.1.4. Representation of a non-ideal transformer: the effect of loading on its ratio windings -- 7.1.5. The two-stage principle -- 7.1.6. Electrical screens between windings -- 7.2. Constructional techniques -- 7.2.1. Design of transformer windings -- 7.2.2. Techniques for minimising the effect of leakage inductance, winding resistance and the capacitances of ratio windings -- 7.2.3. Bifilar winding -- 7.2.4. Rope winding having randomly arranged strands -- 7.2.5. Ordered rope winding -- 7.2.6. Magnetic and electric screens -- 7.2.7. Testing the attainment of a nearly toroidal field -- 7.2.8. Connections to the output ports -- 7.3. Types of transformers -- 7.3.1. Inductive voltage dividers -- 7.3.2. Two-staged IVDs -- 7.3.3. Injection and detection transformers
|
505 |
0 |
|
|a Note continued: 7.3.4. Use of an injection transformer as a small voltage source -- 7.3.5. Use of an injection transformer as a detector of zero current -- 7.3.6. Calibration of injection transformers and their associated phase change circuits -- 7.3.7. Voltage ratio transformers -- 7.3.8. Two-stage construction -- 7.3.9. Matching transformers -- 7.3.10. Current ratio transformers -- 7.3.11. High-frequency construction -- 7.4. Calibration of transformers -- 7.4.1. Calibrating an IVD in terms of a fixed-ratio transformer -- 7.4.2. Calibrating voltage ratio transformers using a calibration transformer with a single output voltage -- 7.4.3. Calibration with a 1:-1 ratio transformer -- 7.4.4. The bridge circuit and details of the shielding -- 7.4.5. The balancing procedure -- 7.4.6. Calibrating voltage transformers by permuting capacitors in a bridge -- 7.4.7. Calibration of current transformers -- 7.4.8. Assessing the effectiveness of current equalisers -- References
|
505 |
0 |
|
|a Note continued: 8.1. Designing bridge networks -- 8.1.1. Applying coaxial techniques to classical single-conductor bridges -- 8.1.2. Placement of current equalisers -- 8.1.3. Wagner circuit (and when it is applicable) -- 8.1.4. Convergence -- 8.1.5. Moving a detector to other ports in a bridge network -- 8.1.6.T-connecting shunt impedances for balance adjustment -- 8.1.7. Role of electronics in bridge design -- 8.1.8. Automating bridge networks -- 8.1.9. Higher-frequency networks -- 8.1.10. Tests of the accuracy of bridges -- References -- 9.1. Bridges to measure the ratio of like impedances -- 9.1.1.A two-terminal IVD bridge -- 9.1.2.A two-terminal-pair IVD bridge -- 9.1.3.A four-terminal-pair IVD bridge -- 9.1.4.A two-terminal-pair bridge based on a 10:-1 voltage ratio transformer -- 9.1.5.A four-terminal-pair bridge based on a two-stage 10:-1 voltage ratio transformer -- 9.1.6. Equal-power resistance bridge -- 9.2. Bridges to measure the ratio of unlike impedances
|
505 |
0 |
|
|a Note continued: 9.2.1.R-C: the quadrature bridge -- 9.2.2. The quadrature bridge-a two-terminal-pair design -- 9.2.3. The quadrature bridge-a four-terminal-pair design -- 9.2.4. Bridges for measuring inductance -- 9.3. AC measurement of quantum Hall resistance -- 9.3.1. AC contact resistance -- 9.3.2. AC longitudinal resistance -- 9.3.3. Measuring RxxLo -- 9.3.4. Measuring RxxHi -- 9.3.5.A simple coaxial bridge for measuring non-decade capacitances -- 9.3.6. Coaxial resistance ratio bridges involving quantum Hall devices -- 9.3.7.A quadrature bridge with two quantum Hall devices -- 9.4. High-frequency networks -- 9.4.1. An IVD-based bridge for comparing 10:1 ratios of impedance from 10 kHz to 1 MHz -- 9.4.2.A bridge for measuring impedance from 10 kHz to 1 MHz based on a 10:-1 voltage ratio transformer -- 9.4.3. Quasi-four-terminal-pair 1:1 and 10:1 ratio bridges for comparing similar impedances from 0.5 to 10 MHz -- 9.4.4.A four-terminal-pair 10-MHz 1:1 resistance ratio bridge
|
505 |
0 |
|
|a Note continued: 9.4.5.A 1.6- and 16-MHz quadrature bridge -- 9.4.6. Four-terminal-pair resonance frequency measurement of capacitors -- 9.4.7. Scattering parameter measurements and the link to microwave measurements -- 9.4.8. Electronic four-terminal-pair impedance-measuring instruments -- References -- 10.1. Resistance thermometry (DC and low-frequency AC) -- 10.1.1. DC resistance thermometry -- 10.1.2. AC resistance thermometry -- 10.2. Superconducting cryogenic current comparator -- 10.2.1. Determining the DC ratio of two resistances R1/R2 -- 10.3. Josephson voltage sources and accurate voltage measurement -- 10.4. Future directions -- 10.4.1. Higher-frequency measurements of quantum Hall resistance -- 10.4.2.Comparing calculable resistance standards up to 100 MHz with finite-element models -- 10.4.3. Radiofrequency and microwave measurements of carbon nanotubes and graphene -- References.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electronics & Semiconductors
|
650 |
|
0 |
|a Electric measurements.
|
650 |
|
6 |
|a Mesures électriques.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Electrical.
|2 bisacsh
|
650 |
|
7 |
|a Electric measurements
|2 fast
|
700 |
1 |
|
|a Schurr, Jürgen,
|d 1962-
|
700 |
1 |
|
|a Kibble, B. P.
|
776 |
0 |
8 |
|i Print version:
|a Awan, Shakil.
|t Coaxial electrical circuits for interference-free measurements.
|d London : Institution of Engineering and Technology, 2011
|z 9781849190695
|w (OCoLC)724289644
|
830 |
|
0 |
|a IET electrical measurement series ;
|v 13.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpCECIFM01/toc
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10497694
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 385701
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7050291
|
994 |
|
|
|a 92
|b IZTAP
|