Cargando…

Propulsion /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kerwin, Justin E. (Justin Elliot)
Otros Autores: Hadler, Jacques B., Paulling, J. Randolph
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Jersey City, N.J. : Society of Naval Architects and Marine Engineers, 2010.
Colección:Principles of naval architecture series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Powering of Ships. 1.1 Historical Discussion
  • 1.2 Types of Ship Machinery
  • 1.3 Definition of Power
  • 1.4 Propulsive Efficiency
  • 2. Two-Dimensional Hydrofoils. 2.1 Introduction
  • 2.2 Foil Geometry
  • 2.3 Conformal Mapping
  • 2.4 Linearized Theory for a Two-Dimensional Foil Section
  • 2.5 Glauter's Solution for a Two-Dimensional Foil
  • 2.6 The Design of Mean Lines: The NACA a-Series
  • 2.7 Linearized Pressure Coefficient
  • 2.8 Comparison of Pressure Distributions
  • 2.9 Solution of the Linearized Thickness Problem
  • 2.10 Superposition of Camber, Angle of Attack, and Thickness
  • 2.11 Correcting Linear Theory near the Leading Edge
  • 2.12 Two-Dimensional Vortex Lattice Theory
  • 2.13 Two-Dimensional Panel Methods
  • 2.14 The Cavitation Bucket Diagram
  • 2.15 Viscous Effects: Two-Dimensional Foil Sections
  • 3. Three-Dimensional Hydrofoil Theory. 3.1 Introductory Concepts
  • 3.2 The Strength of the Free Vortex Sheet in the Wake
  • 3.3 The Velocity Induced by a Three-Dimensional Vortex Line
  • 3.4 Velocity Induced by a Straight Vortex Segment
  • 3.5 Linearized Lifting-Surface Theory for a Planar Foil
  • 3.6 Lift and Drag
  • 3.7 Lifting Line Theory
  • 3.8 Lifting Surface Results
  • 4. Hydrodynamic Theory of Propulsors. 4.1 Inflow
  • 4.2 Notation
  • 4.3 Actuator Disk
  • 4.4 Axisymmetric Euler Solver Simulation of an Actuator Disk
  • 4.5 The Ducted Actuator Disk
  • 4.6 Axisymmetric Euler Solver Simulation of a Ducted Actuator Disk
  • 4.7 Propeller Lifting Line Theory
  • 4.8 Optimum Circulation Distributions
  • 4.9 Lifting Line Theory for Arbitrary Circulation Distributions
  • 4.10 Propeller Vortex Lattice Lifting Line Theory
  • 4.11 Propeller Lifting-Surface Theory and Computational Methods
  • 5. Unsteady Propeller Forces. 5.1 Types of Unsteady Forces
  • 5.2 Basic Equations for Linearized Two-Dimensional Unsteady Foil Theory
  • 5.3 Analytical Solutions for Two-Dimensional Unsteady Flows
  • 5.4 Numerical Time Domain Solution
  • 5.5 Wake Harmonics and Unsteady Propeller Forces
  • 5.6 Transverse Alternating Forces
  • 5.7 Unsteady Three-Dimensional Computational Methods for Propellers
  • 5.8 Unsteady Propeller Force Example
  • 6. Theory of Cavitation. 6.1 Introduction
  • 6.2 Noncavitating Flow - Cavitation Inception
  • 6.3 Cavity Flows - Formulation of the Problem
  • 6.4 Cavitating Hydrofoils - Linearized Formulation
  • 6.5 Numerical Methods
  • 6.6 Leading Edge Correction
  • 6.7 Panel Methods for Two-Dimensional and Three-Dimensional Cavity Flows
  • 6.8 Cavitating Propeller
  • 6.9 Comparisons with Experiments
  • 6.10 Effects of Viscosity on Cavitation
  • 6.11 Design in the Presence of Cavitation
  • 7. Scaling Laws and Model Tests. 7.1 Introduction
  • 7.2 Law of Similitude for Propellers
  • 7.3 Open-Water Tests
  • 7.4 Model Self-Propulsion Tests
  • 7.5 Wake Survey
  • 7.6 Propeller Cavitation Tests
  • 8. Propeller Design. 8.1 Introduction
  • 8.2 The Design and Analysis Loop
  • 8.3 Definition of the Problem
  • 8.4 Preliminary Design
  • 8.5 Design Point
  • 8.6 Analysis and Optimization of the Design
  • 9. Waterjet Propulsion. 9.1 Hydrodynamic Issues
  • 9.2 Inlet Analysis
  • 9.3 Pump Design and Analysis
  • 9.4 Tip Leakage Flow
  • 10. Other Propulsion Devices. 10.1 Introduction
  • 10.2 Tunnel Sterns
  • 10.3 Vertical-Axis Propellers
  • 10.4 Overlapping Propellers
  • 10.5 Supercavitating Propellers
  • 10.6 Surface Piercing Propellers
  • 10.7 Controllable-Pitch Propellers
  • 11. Propeller Strength. 11.1 Introduction
  • 11.2 Stresses Based on Modified Cantilever Beam Analysis
  • 11.3 Bending Moments due to Hydrodynamic Loading
  • 11.4 Centrifugal Force
  • 11.5 Strength Analysis
  • 11.6 Stresses Based on Finite Element Analysis
  • 11.7 Minimum Blade Thickness Based on Classification Society Rules
  • 11.8 Fatigue Analysis
  • 11.9 Materials
  • 12. Ship Standardization Trials. 12.1 Purpose of Trials
  • 12.2 Preparation for Trials
  • 12.3 General Plan of Trials
  • 12.4 Measurement of Speed
  • 12.5 Analysis of Speed Trials
  • 12.6 Derivation of Model-Ship Correlation Allowance.