|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
KNOVEL_ocn713638632 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
110420s1993 si a ob 000 0 eng d |
040 |
|
|
|a KNOVL
|b eng
|e pn
|c KNOVL
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d N$T
|d E7B
|d IDEBK
|d KNOVL
|d ZCU
|d KNOVL
|d OCLCF
|d STF
|d KNOVL
|d YDXCP
|d OCLCQ
|d COO
|d OCLCQ
|d BUF
|d CEF
|d RRP
|d WYU
|d JBG
|d UKAHL
|d ERF
|d OCLCQ
|d LEAUB
|d MM9
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 826658048
|a 1066417571
|a 1086500106
|
020 |
|
|
|a 9781615838707
|q (electronic bk.)
|
020 |
|
|
|a 1615838708
|q (electronic bk.)
|
020 |
|
|
|a 9789812797100
|q (electronic bk.)
|
020 |
|
|
|a 9812797106
|q (electronic bk.)
|
020 |
|
|
|z 9810210493
|
020 |
|
|
|z 9789810210496
|
029 |
1 |
|
|a AU@
|b 000047057039
|
029 |
1 |
|
|a DEBSZ
|b 350319901
|
029 |
1 |
|
|a GBVCP
|b 803570201
|
029 |
1 |
|
|a NZ1
|b 14231535
|
035 |
|
|
|a (OCoLC)713638632
|z (OCoLC)826658048
|z (OCoLC)1066417571
|z (OCoLC)1086500106
|
037 |
|
|
|b Knovel Corporation
|n http://www.knovel.com
|
050 |
|
4 |
|a QA935
|b .P75 1993eb
|
072 |
|
7 |
|a TEC
|x 063000
|2 bisacsh
|
082 |
0 |
4 |
|a 624.1/776/0151
|2 22
|
084 |
|
|
|a ZI 3350
|2 rvk
|
084 |
|
|
|a *74-02
|2 msc
|
084 |
|
|
|a 17,1
|2 ssgn
|
084 |
|
|
|a 50.31
|2 bcl
|
084 |
|
|
|a 74K15
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Pshenichnov, G. I.
|
245 |
1 |
2 |
|a A theory of latticed plates and shells /
|c G.I. Pshenichnov.
|
246 |
3 |
0 |
|a Latticed plates and shells
|
260 |
|
|
|a Singapore ;
|a River Edge, NJ :
|b World Scientific,
|c ©1993.
|
300 |
|
|
|a 1 online resource (xi, 309 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Series on advances in mathematics for applied sciences ;
|v v. 5
|
504 |
|
|
|a Includes bibliographical references (pages 303-309).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Reticulated shell theory: equations. 1.1. Anisotropic shell theory: basic equations -- 1.2. Constitutive equations in the reticulated shell theory -- 1.3. More precise constitutive equations in the reticulated shell theory -- 2. Decomposition method. 2.1. Solution of equations and boundary value problems by the decomposition method -- 2.2. Application of the decomposition method for particular problems -- 3. Statics. 3.1. Plane problem -- 3.2. Bending of plates -- 3.3. Shallow shells -- 3.4. Small parameter method in the shallow shell theory -- 3.5. Circular cylindrical shells -- 3.6. Optimum design of a shell with an orthogonal lattice -- 3.7. Shells of rotation -- 3.8. Momentless theory -- 3.9. Simple edge effect in the reticulated shell theory -- 3.10. A new method for solving nonlinear problems -- 4. Stability. 4.1. Stability of plates -- 4.2. Stability of cylindrical shells and shells of rotation -- 5. Vibration. 5.1. Free and parametric vibrations of plates -- 5.2. Free and forced vibrations of shallow shells -- 5.3. Free vibrations of closed cylindrical shells -- 5.4. Vibrations of shells of rotation -- 6. Multilayer systems. 6.1. Structural coatings -- 6.2 Ribbed and multilayer reticulated shells and plates.
|
520 |
|
|
|a The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonlinear problems, substantially simplifying the existing algorithms is given. Questions of optimum design are discussed. Some of the findings are generalized and extended to edged and composite systems. The results of the solutions of a wide range of pressing problems are presented.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Civil Engineering & Construction Materials
|
650 |
|
0 |
|a Elastic plates and shells.
|
650 |
|
6 |
|a Plaques et coques élastiques.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Structural.
|2 bisacsh
|
650 |
|
7 |
|a Elastic plates and shells
|2 fast
|
650 |
|
7 |
|a Plaques et coques élastiques.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Pshenichnov, G.I.
|t Theory of latticed plates and shells.
|d Singapore ; River Edge, NJ : World Scientific, ©1993
|z 9810210493
|w (DLC) 92033782
|w (OCoLC)26807054
|
830 |
|
0 |
|a Series on advances in mathematics for applied sciences ;
|v v. 5.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSAMASVTK/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24685315
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10700572
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 520868
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25731806
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9979040
|
994 |
|
|
|a 92
|b IZTAP
|