Cargando…

Methodology of crevice corrosion testing for stainless steels in natural and treated seawaters /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores Corporativos: European Federation of Corrosion, Institute of Materials, Minerals, and Mining
Otros Autores: Kivisäkk, U. (Ulf), Espelid, B. (Bård), Féron, D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Leeds : Maney Pub., 2010.
Colección:Publications (European Federation of Corrosion) ; no. 60.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title page
  • Half title
  • Contents
  • European Federation of Corrosion (EFC) publications: Series introduction
  • Volumes in the EFC series
  • Preface
  • 1 Crevice corrosion from a historical perspective
  • 1.1 Introduction
  • 1.2 The mechanism
  • 1.3 The ferric chloride test
  • 1.4 Field tests
  • 1.5 Electrochemical tests
  • 1.6 Conclusions
  • 2 Objectives and background
  • 2.1 Introduction
  • 2.2 Establishment of the state-of-the-art
  • 2.3 Formulation of a new synthetic seawater
  • 2.4 Electrochemically controlled crevice corrosion test
  • 2.5 Inter-comparison testing3 Laboratory calibration
  • 3.1 â€?Calibrationâ€? of participating laboratories in the project
  • 3.2 Experimental procedure
  • 3.3 Test results
  • 3.3.1 Weight loss
  • 3.3.2 Number of etchings/attacks
  • 3.3.3 Maximum depth of attack
  • 3.4 Conclusions from the â€?calibrationâ€? test
  • 4 Crevice formers for specimens of plate material
  • 4.1 Optimisation of test parameters of importance for crevice corrosion testing
  • 5 Crevice corrosion testing of tubes
  • 5.1 Introduction
  • 5.2 Experimental
  • 5.2.1 Materials
  • 5.2.2 Design of crevice former5.2.3 Finite Element Method Modelling
  • 5.2.4 Crevice corrosion testing
  • 5.3 Results
  • 5.3.1 Finite Element Method modelling
  • 5.3.2 Crevice corrosion testing
  • 5.4 Discussion
  • 5.4.1 Specimen area
  • 5.4.2 Crevice former
  • 5.4.3 Clamping force
  • 5.4.4 Proposed crevice former procedure for tube specimens
  • 5.5 Crevice corrosion testing of stainless steel tubes applied as umbilicals
  • 5.6 Conclusions from crevice corrosion testing of tubes
  • 6 Formulation of new synthetic seawater for aerobic environment
  • 6.1 Introduction6.2 Experimental
  • 6.3 Electrochemical tests
  • 6.4 Crevice corrosion experiments
  • 6.4.1 After test examination
  • 6.4.2 Chemical method versus the biochemical method
  • 6.4.3 Influence of the tank material
  • 6.4.4 Influence of the cathodic area
  • 6.4.5 Influence of stainless steel grades
  • 6.4.6 Influence of chemicals and biochemicals
  • 6.4.7 Influence of temperature
  • 6.4.8 Influence of the crevice holder system
  • 6.5 Conclusions
  • 7 Simulation of anaerobic environments
  • 7.1 Introduction
  • 7.2 Experimental
  • 7.3 Results and discussion7.3.1 Influence of the polarisation scanning rate
  • 7.3.2 Breakdown potentials in sterile aerated seawater
  • 7.3.3 Breakdown potentials in anaerobic seawater with SRB
  • 7.3.4 Breakdown potentials Na2S solution
  • 7.4 Conclusion
  • 8 Synergy of aerobic and anaerobic conditions
  • 8.1 Introduction
  • 8.2 Synergy of aerobic and anaerobic biofi lms on EN 1.4404
  • 8.3 Synergy of aerobic and anaerobic biofi lms on EN 1.4462 and EN 1.4547
  • 8.4 Laboratory simulation of the synergy
  • 8.5 Conclusion