Methodology of crevice corrosion testing for stainless steels in natural and treated seawaters /
Clasificación: | Libro Electrónico |
---|---|
Autores Corporativos: | , |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Leeds :
Maney Pub.,
2010.
|
Colección: | Publications (European Federation of Corrosion) ;
no. 60. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Title page
- Half title
- Contents
- European Federation of Corrosion (EFC) publications: Series introduction
- Volumes in the EFC series
- Preface
- 1 Crevice corrosion from a historical perspective
- 1.1 Introduction
- 1.2 The mechanism
- 1.3 The ferric chloride test
- 1.4 Field tests
- 1.5 Electrochemical tests
- 1.6 Conclusions
- 2 Objectives and background
- 2.1 Introduction
- 2.2 Establishment of the state-of-the-art
- 2.3 Formulation of a new synthetic seawater
- 2.4 Electrochemically controlled crevice corrosion test
- 2.5 Inter-comparison testing3 Laboratory calibration
- 3.1 �Calibration� of participating laboratories in the project
- 3.2 Experimental procedure
- 3.3 Test results
- 3.3.1 Weight loss
- 3.3.2 Number of etchings/attacks
- 3.3.3 Maximum depth of attack
- 3.4 Conclusions from the �calibration� test
- 4 Crevice formers for specimens of plate material
- 4.1 Optimisation of test parameters of importance for crevice corrosion testing
- 5 Crevice corrosion testing of tubes
- 5.1 Introduction
- 5.2 Experimental
- 5.2.1 Materials
- 5.2.2 Design of crevice former5.2.3 Finite Element Method Modelling
- 5.2.4 Crevice corrosion testing
- 5.3 Results
- 5.3.1 Finite Element Method modelling
- 5.3.2 Crevice corrosion testing
- 5.4 Discussion
- 5.4.1 Specimen area
- 5.4.2 Crevice former
- 5.4.3 Clamping force
- 5.4.4 Proposed crevice former procedure for tube specimens
- 5.5 Crevice corrosion testing of stainless steel tubes applied as umbilicals
- 5.6 Conclusions from crevice corrosion testing of tubes
- 6 Formulation of new synthetic seawater for aerobic environment
- 6.1 Introduction6.2 Experimental
- 6.3 Electrochemical tests
- 6.4 Crevice corrosion experiments
- 6.4.1 After test examination
- 6.4.2 Chemical method versus the biochemical method
- 6.4.3 Influence of the tank material
- 6.4.4 Influence of the cathodic area
- 6.4.5 Influence of stainless steel grades
- 6.4.6 Influence of chemicals and biochemicals
- 6.4.7 Influence of temperature
- 6.4.8 Influence of the crevice holder system
- 6.5 Conclusions
- 7 Simulation of anaerobic environments
- 7.1 Introduction
- 7.2 Experimental
- 7.3 Results and discussion7.3.1 Influence of the polarisation scanning rate
- 7.3.2 Breakdown potentials in sterile aerated seawater
- 7.3.3 Breakdown potentials in anaerobic seawater with SRB
- 7.3.4 Breakdown potentials Na2S solution
- 7.4 Conclusion
- 8 Synergy of aerobic and anaerobic conditions
- 8.1 Introduction
- 8.2 Synergy of aerobic and anaerobic biofi lms on EN 1.4404
- 8.3 Synergy of aerobic and anaerobic biofi lms on EN 1.4462 and EN 1.4547
- 8.4 Laboratory simulation of the synergy
- 8.5 Conclusion