Sensor and data fusion : a tool for information assessment and decision making /
This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sen...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bellingham, Wash. :
SPIE Press,
©2004.
|
Colección: | SPIE monograph ;
PM138. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction
- Chapter 2. Multiple sensor system applications, benefits, and design considerations
- 2.1. Data fusion applications to multiple sensor systems
- 2.2. Selection of sensors
- 2.3. Benefits of multiple sensor systems
- 2.4. Influence of wavelength on atmospheric attenuation
- 2.5. Fog characterization
- 2.6. Effects of operating frequency on MMW sensor performance
- 2.7. Absorption of MMW energy in rain and fog
- 2.8. Backscatter of MMW energy from rain
- 2.9. Effects of operating wavelength on IR sensor performance
- 2.10. Visibility metrics
- 2.10.1. Visibility
- 2.10.2. Meteorological range
- 2.11. Attenuation of IR energy by rain
- 2.12. Extinction coefficient values (typical)
- 2.13. Summary of attributes of electromagnetic sensors
- 2.14. Atmospheric and sensor system computer simulation models
- 2.14.1. LOWTRAN attenuation model
- 2.14.2. FASCODE and MODTRAN attenuation models
- 2.14.3. EOSAEL sensor performance model
- 2.15. Summary
- References.
- Chapter 3. Data fusion algorithms and architectures
- 3.1. Definition of data fusion
- 3.2. Level 1 processing
- 3.3. Level 2, 3, and 4 processing
- 3.4. Data fusion processor functions
- 3.5. Definition of an architecture
- 3.6. Data fusion architectures
- 3.7. Sensor footprint registration and size considerations
- 3.8. Summary
- References.
- Chapter 4. Classical inference
- 4.1. Estimating the statistics of a population
- 4.2. Interpreting the confidence interval
- 4.3. Confidence interval for a population mean
- 4.4. Significance tests for hypotheses
- 4.5. The z-test for the population mean
- 4.6. Tests with fixed significance level
- 4.7. The t-test for a population mean
- 4.8. Caution in use of significance tests
- 4.9. Inference as a decision
- 4.10. Summary
- References.
- Chapter 5. Bayesian inference
- 5.1. Bayes' rule
- 5.2. Bayes' rule in terms of odds probability and likelihood ratio
- 5.3. Direct application of Bayes' rule to cancer screening test example
- 5.4. Comparison of Bayesian inference with classical inference
- 5.5. Application of Bayesian inference to fusing information from multiple sources
- 5.6. Combining multiple sensor information using the odds probability form of Bayes' rule
- 5.7. Recursive Bayesian updating
- 5.8. Posterior calculation using multivalued hypotheses and recursive updating
- 5.9. Enhancing underground mine detection with data from two noncommensurate sensors
- 5.10. Summary
- References.
- Chapter 6. Dempster-Shafer evidential theory
- 6.1. Overview of the process
- 6.2. Implementation of the method
- 6.3. Support, plausibility, and uncertainty interval
- 6.4. Dempster's rule for combination of multiple sensor data
- 6.5. Comparison of Dempster-Shafer with Bayesian decision theory
- 6.6 Probabilistic models for transformation of Dempster-Shafer belief functions for decision making
- 6.7. Summary
- References.
- Chapter 7. Artificial neural networks
- 7.1. Applications of artificial neural networks
- 7.2. Adaptive linear combiner
- 7.3. Linear classifiers
- 7.4. Capacity of linear classifiers
- 7.5. Nonlinear classifiers
- 7.6. Capacity of nonlinear classifiers
- 7.7. Supervised and unsupervised learning
- 7.8. Supervised learning rules
- 7.9. Generalization
- 7.10. Other artificial neural networks and processing techniques
- 7.11. Summary
- References.
- Chapter 8. Voting logic fusion
- 8.1. Sensor target reports
- 8.2. Sensor detection space
- 8.3. System detection probability
- 8.4. Application example without singleton sensor detection modes
- 8.5. Hardware implementation of voting logic sensor fusion
- 8.6. Application example with singleton sensor detection modes
- 8.7. Comparison of voting logic fusion with Dempster-Shafer evidential theory
- 8.8. Summary
- References.
- Chapter 9. Fuzzy logic and fuzzy neural networks
- 9.1. Conditions under which fuzzy logic provides an appropriate solution
- 9.2. Illustration of fuzzy logic in an automobile antilock system
- 9.3. Basic elements of a fuzzy system
- 9.4. Fuzzy logic processing
- 9.5. Fuzzy centroid calculation
- 9.6. Balancing an inverted pendulum with fuzzy logic control
- 9.7. Fuzzy logic applied to multitarget tracking
- 9.8. Fuzzy neural networks
- 9.9. Fusion of fuzzy-valued information from multiple
- sources
- 9.10. Summary
- References.
- Chapter 10. Passive data association techniques for unambiguous location of targets
- 10.1. Data fusion options
- 10.2. Received-signal fusion
- 10.3. Angle data fusion
- 10.4. Decentralized fusion architecture
- 10.5. Passive computation of range using tracks from a single sensor site
- 10.6. Summary
- References.
- Chapter 11. Retrospective comments
- Appendix A. Planck radiation law and radiative transfer
- A.1. Planck radiation law
- A.2. Radiative transfer theory
- References
- Appendix B. Voting fusion with nested confidence levels
- Index.