|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
KNOVEL_ocn697185227 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
110117s2004 waua ob 001 0 eng d |
040 |
|
|
|a KNOVL
|b eng
|e pn
|c KNOVL
|d CEF
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d KNOVL
|d ZCU
|d KNOVL
|d OCLCF
|d J2I
|d OCLCE
|d SPIES
|d EBLCP
|d E7B
|d OCLCO
|d U5D
|d OCLCQ
|d CHVBK
|d OCLCO
|d KNOVL
|d MYG
|d YDXCP
|d OCLCQ
|d VT2
|d MERUC
|d BUF
|d OCLCQ
|d RRP
|d AU@
|d WYU
|d OCLCO
|d OCLCQ
|d OCLCO
|d BWN
|d ERF
|d OCLCO
|d OCLCQ
|d S2H
|d OCLCQ
|d BRF
|d MM9
|d EYM
|d OCLCQ
|d OCLCO
|d OCLCQ
|d UIU
|d INARC
|d OCLCQ
|
019 |
|
|
|a 504289449
|a 606697056
|a 644978184
|a 645684625
|a 671980463
|a 961901362
|a 988673994
|a 999589889
|a 1027369300
|a 1044278821
|a 1048760759
|a 1058621267
|a 1064628295
|a 1064750226
|a 1071952765
|a 1110414310
|a 1116931120
|
020 |
|
|
|a 9781615837243
|q (electronic bk.)
|
020 |
|
|
|a 1615837248
|q (electronic bk.)
|
020 |
|
|
|a 9780819454355
|
020 |
|
|
|a 0819454354
|
020 |
|
|
|a 9780819481115
|q (electronic)
|
020 |
|
|
|a 0819481114
|q (electronic)
|
024 |
7 |
|
|a 10.1117/3.563340
|2 doi
|
029 |
1 |
|
|a AU@
|b 000046686825
|
029 |
1 |
|
|a AU@
|b 000051589616
|
029 |
1 |
|
|a CHBIS
|b 006439190
|
029 |
1 |
|
|a CHVBK
|b 173756166
|
029 |
1 |
|
|a DEBSZ
|b 338258167
|
029 |
1 |
|
|a DEBSZ
|b 431010331
|
029 |
1 |
|
|a GBVCP
|b 1018189998
|
029 |
1 |
|
|a GBVCP
|b 661524825
|
029 |
1 |
|
|a NZ1
|b 13517315
|
029 |
1 |
|
|a NZ1
|b 14231872
|
035 |
|
|
|a (OCoLC)697185227
|z (OCoLC)504289449
|z (OCoLC)606697056
|z (OCoLC)644978184
|z (OCoLC)645684625
|z (OCoLC)671980463
|z (OCoLC)961901362
|z (OCoLC)988673994
|z (OCoLC)999589889
|z (OCoLC)1027369300
|z (OCoLC)1044278821
|z (OCoLC)1048760759
|z (OCoLC)1058621267
|z (OCoLC)1064628295
|z (OCoLC)1064750226
|z (OCoLC)1071952765
|z (OCoLC)1110414310
|z (OCoLC)1116931120
|
037 |
|
|
|b Knovel Corporation
|n http://www.knovel.com
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a TK5102.9
|b .K53 2004eb
|
082 |
0 |
4 |
|a 681/.2
|2 22
|
084 |
|
|
|a 54.69
|2 bcl
|
084 |
|
|
|a ZN 6040
|2 rvk
|
084 |
|
|
|a MSR 060f
|2 stub
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Klein, Lawrence A.
|
245 |
1 |
0 |
|a Sensor and data fusion :
|b a tool for information assessment and decision making /
|c Lawrence A. Klein.
|
260 |
|
|
|a Bellingham, Wash. :
|b SPIE Press,
|c ©2004.
|
300 |
|
|
|a 1 online resource (xxii, 317 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|
490 |
1 |
|
|a SPIE Press monograph ;
|v PM138
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Chapter 1. Introduction -- Chapter 2. Multiple sensor system applications, benefits, and design considerations -- 2.1. Data fusion applications to multiple sensor systems -- 2.2. Selection of sensors -- 2.3. Benefits of multiple sensor systems -- 2.4. Influence of wavelength on atmospheric attenuation -- 2.5. Fog characterization -- 2.6. Effects of operating frequency on MMW sensor performance -- 2.7. Absorption of MMW energy in rain and fog -- 2.8. Backscatter of MMW energy from rain -- 2.9. Effects of operating wavelength on IR sensor performance -- 2.10. Visibility metrics -- 2.10.1. Visibility -- 2.10.2. Meteorological range -- 2.11. Attenuation of IR energy by rain -- 2.12. Extinction coefficient values (typical) -- 2.13. Summary of attributes of electromagnetic sensors -- 2.14. Atmospheric and sensor system computer simulation models -- 2.14.1. LOWTRAN attenuation model -- 2.14.2. FASCODE and MODTRAN attenuation models -- 2.14.3. EOSAEL sensor performance model -- 2.15. Summary -- References.
|
505 |
8 |
|
|a Chapter 3. Data fusion algorithms and architectures -- 3.1. Definition of data fusion -- 3.2. Level 1 processing -- 3.3. Level 2, 3, and 4 processing -- 3.4. Data fusion processor functions -- 3.5. Definition of an architecture -- 3.6. Data fusion architectures -- 3.7. Sensor footprint registration and size considerations -- 3.8. Summary -- References.
|
505 |
8 |
|
|a Chapter 4. Classical inference -- 4.1. Estimating the statistics of a population -- 4.2. Interpreting the confidence interval -- 4.3. Confidence interval for a population mean -- 4.4. Significance tests for hypotheses -- 4.5. The z-test for the population mean -- 4.6. Tests with fixed significance level -- 4.7. The t-test for a population mean -- 4.8. Caution in use of significance tests -- 4.9. Inference as a decision -- 4.10. Summary -- References.
|
505 |
8 |
|
|a Chapter 5. Bayesian inference -- 5.1. Bayes' rule -- 5.2. Bayes' rule in terms of odds probability and likelihood ratio -- 5.3. Direct application of Bayes' rule to cancer screening test example -- 5.4. Comparison of Bayesian inference with classical inference -- 5.5. Application of Bayesian inference to fusing information from multiple sources -- 5.6. Combining multiple sensor information using the odds probability form of Bayes' rule -- 5.7. Recursive Bayesian updating -- 5.8. Posterior calculation using multivalued hypotheses and recursive updating -- 5.9. Enhancing underground mine detection with data from two noncommensurate sensors -- 5.10. Summary -- References.
|
505 |
8 |
|
|a Chapter 6. Dempster-Shafer evidential theory -- 6.1. Overview of the process -- 6.2. Implementation of the method -- 6.3. Support, plausibility, and uncertainty interval -- 6.4. Dempster's rule for combination of multiple sensor data -- 6.5. Comparison of Dempster-Shafer with Bayesian decision theory -- 6.6 Probabilistic models for transformation of Dempster-Shafer belief functions for decision making -- 6.7. Summary -- References.
|
505 |
8 |
|
|a Chapter 7. Artificial neural networks -- 7.1. Applications of artificial neural networks -- 7.2. Adaptive linear combiner -- 7.3. Linear classifiers -- 7.4. Capacity of linear classifiers -- 7.5. Nonlinear classifiers -- 7.6. Capacity of nonlinear classifiers -- 7.7. Supervised and unsupervised learning -- 7.8. Supervised learning rules -- 7.9. Generalization -- 7.10. Other artificial neural networks and processing techniques -- 7.11. Summary -- References.
|
505 |
8 |
|
|a Chapter 8. Voting logic fusion -- 8.1. Sensor target reports -- 8.2. Sensor detection space -- 8.3. System detection probability -- 8.4. Application example without singleton sensor detection modes -- 8.5. Hardware implementation of voting logic sensor fusion -- 8.6. Application example with singleton sensor detection modes -- 8.7. Comparison of voting logic fusion with Dempster-Shafer evidential theory -- 8.8. Summary -- References.
|
505 |
8 |
|
|a Chapter 9. Fuzzy logic and fuzzy neural networks -- 9.1. Conditions under which fuzzy logic provides an appropriate solution -- 9.2. Illustration of fuzzy logic in an automobile antilock system -- 9.3. Basic elements of a fuzzy system -- 9.4. Fuzzy logic processing -- 9.5. Fuzzy centroid calculation -- 9.6. Balancing an inverted pendulum with fuzzy logic control -- 9.7. Fuzzy logic applied to multitarget tracking -- 9.8. Fuzzy neural networks -- 9.9. Fusion of fuzzy-valued information from multiple -- sources -- 9.10. Summary -- References.
|
505 |
8 |
|
|a Chapter 10. Passive data association techniques for unambiguous location of targets -- 10.1. Data fusion options -- 10.2. Received-signal fusion -- 10.3. Angle data fusion -- 10.4. Decentralized fusion architecture -- 10.5. Passive computation of range using tracks from a single sensor site -- 10.6. Summary -- References.
|
505 |
8 |
|
|a Chapter 11. Retrospective comments -- Appendix A. Planck radiation law and radiative transfer -- A.1. Planck radiation law -- A.2. Radiative transfer theory -- References -- Appendix B. Voting fusion with nested confidence levels -- Index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
590 |
|
|
|a Knovel
|b ACADEMIC - Electronics & Semiconductors
|
590 |
|
|
|a Knovel
|b ACADEMIC - Process Design, Control & Automation
|
650 |
|
0 |
|a Signal processing
|x Digital techniques.
|
650 |
|
0 |
|a Multisensor data fusion.
|
650 |
|
6 |
|a Traitement du signal
|x Techniques numériques.
|
650 |
|
6 |
|a Fusion multicapteurs.
|
650 |
|
7 |
|a Multisensor data fusion.
|2 fast
|0 (OCoLC)fst01029095
|
650 |
|
7 |
|a Signal processing
|x Digital techniques.
|2 fast
|0 (OCoLC)fst01118285
|
650 |
|
7 |
|a Datenfusion
|2 gnd
|
650 |
|
7 |
|a Sensor
|2 gnd
|
650 |
1 |
7 |
|a Sensoren.
|2 gtt
|
650 |
1 |
7 |
|a Signaalverwerking.
|2 gtt
|
776 |
0 |
8 |
|i Print version:
|a Klein, Lawrence A.
|t Sensor and data fusion.
|d Bellingham, Wash. : SPIE Press, ©2004
|z 0819454354
|w (DLC) 2004003963
|w (OCoLC)54536689
|
830 |
|
0 |
|a SPIE monograph ;
|v PM138.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSDFATIA1/toc
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n sensordatafusion0000klei
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10561593
|
938 |
|
|
|a Society of Photo-Optical Instrumentation Engineers
|b SPIE
|n 9780819481115
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9339788
|
994 |
|
|
|a 92
|b IZTAP
|