Cargando…

Fundamentals of infrared detector materials /

The choice of available infrared (IR) detectors for insertion into modern IR systems is both large and confusing. The purpose of this volume is to provide a technical database from which rational IR detector selection criteria evolve, and thus clarify the options open to the modern IR system designe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kinch, Michael A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Wash. : SPIE Press, ©2007.
Colección:Tutorial texts in optical engineering ; v. TT 76.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction. 2. IR detector performance criteria. 2.1. Photon detectors
  • 2.2. Thermal detectors.
  • 3. IR detector materials: a technology comparison. 3.1. Intrinsic direct bandgap semiconductor
  • 3.2. Extrinsic semiconductor
  • 3.3. Quantum well IR photodetectors (QWIPs)
  • 3.4. Silicon schottky barrier detectors
  • 3.5. High-temperature superconductor
  • 3.6. Conclusions.
  • 4. Intrinsic direct bandgap semiconductors. 4.1. Minority carrier lifetime
  • 4.2. Diode dark current models
  • 4.3. Binary compounds
  • 4.4. Ternary alloys
  • 4.5. Pb1-x SnxTe
  • 4.6. Type III superlattices
  • 4.7. Type II superlattices
  • 4.8. Direct bandgap materials: conclusions.
  • 5. HgCdTe: material of choice for tactical systems. 5.1. HgCdTe material properties
  • 5.2. HgCdTe device architectures
  • 5.3. ROIC requirements
  • 5.4. Detector performance
  • 5.5. HgCdTe: conclusions.
  • 6. Uncooled detection. 6.1. Thermal detection
  • 6.2. Photon detection
  • 6.3. Uncooled photon vs. thermal detection limits
  • 6.4. Uncooled detection: conclusions.
  • 7. HgCdTe electron avalanche photodiodes (EAPDs). 7.1. McIntyre's avalanche photodiode model
  • 7.2. Physics of HgCdTe EAPDs
  • 7.3. Empirical model for electron avalanche gain in HgCdTe
  • 7.4. Room-temperature HgCdTe APD performance
  • 7.5. Monte Carlo modeling
  • 7.6. Conclusions.
  • 8. Future HgCdTe developments. 8.1. Dark current model
  • 8.2. The separate absorption and detection diode structure
  • 8.3. Multicolor and multispectral FPAs
  • 8.4. High-density FPAs
  • 8.5. Low background operation
  • 8.6. Higher operating temperatures
  • 8.7. Conclusion
  • Epilogue
  • Appendix A. Mathcad program for HgCdTe diode dark
  • Current modeling
  • References
  • About the author
  • Index.