Lab-on-a-chip : techniques, circuits, and biomedical applications /
"Here's a groundbreaking book that introduces and discusses the important aspects of lab-on-a-chip, including the practical techniques, circuits, microsystems, and key applications in the biomedical, biology, and life science fields. Moreover, this volume covers ongoing research in lab-on-...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood, Mass. :
Artech House,
©2010.
|
Colección: | Artech House integrated microsystems series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction to Lab-on-a-Chip
- 1.1. History
- 1.2. Parts and Components of Lab-on-a-Chip
- 1.2.1. Electric and Magnetic Actuators
- 1.2.2. Electrical Sensors
- 1.2.3. Thermal Sensors
- 1.2.4. Optical Sensors
- 1.2.5. Microfluidic Chambers
- 1.3. Applications of Lab-on-a-Chip
- 1.4. Advantages and Disadvantages of Lab-on-a-Chip
- References
- 2. Cell Structure, Properties, and Models
- 2.1. Cell Structure
- 2.1.1. Prokaryotic Cells
- 2.1.2. Eukaryotic Cells
- 2.1.3. Cell Components
- 2.2. Electromechanics of Particles
- 2.2.1. Single-Layer Model
- 2.2.2. Double-Layer Model
- 2.3. Electrogenic Cells
- 2.3.1. Neurons
- 2.3.2. Gated Ion Channels
- 2.3.3. Action Potential
- References
- 3. Cell Manipulator Fields
- 3.1. Electric Field
- 3.1.1. Uniform Electric Field (Electrophoresis)
- 3.1.2. Nonuniform Electric Field (Dielectrophoresis)
- 3.2. Magnetic Field
- 3.2.1. Nonuniform Magnetic Field (Magnetophoresis)
- 3.2.2. Magnetophoresis Force (MAP Force)
- References
- 4. Metal-Oxide Semiconductor (MOS) Technology Fundamentals
- 4.1. Semiconductor Properties
- 4.2. Intrinsic Semiconductors
- 4.3. Extrinsic Semiconductor
- 4.3.1. N-Type Doping
- 4.3.2. P-Type Doping
- 4.4. MOS Device Physics
- 4.5. MOS Characteristics
- 4.5.1. Modes of Operation
- 4.6. Complementary Metal-Oxide Semiconductor (CMOS) Device
- 4.6.1. Advantages of CMOS Technology
- References
- 5. Sensing Techniques for Lab-on-a-Chip
- 5.1. Optical Technique
- 5.2. Fluorescent Labeling Technique
- 5.3. Impedance Sensing Technique
- 5.4. Magnetic Field Sensing Technique
- 5.5. CMOS AC Electrokinetic Microparticle Analysis System
- 5.5.1. Bioanalysis Platform
- 5.5.2. Experimental Tests
- References
- 6. CMOS-Based Lab-on-a-Chip
- 6.1. PCB Lab-on-a-Chip for Micro-Organism Detection and Characterization
- 6.2. Actuation
- 6.3. Impedance Sensing
- 6.4. CMOS Lab-on-a-Chip for Micro-Organism Detection and Manipulation
- 6.5. CMOS Lab-on-a-Chip for Neuronal Activity Detection
- 6.6. CMOS Lab-on-a-Chip for Cytometry Applications
- 6.7. Flip-Chip Integration
- References
- 7. CMOS Electric-Field-Based Lab-on-a-Chip for Cell Characterization and Detection
- 7.1. Design Flow
- 7.2. Actuation
- 7.3. Electrostatic Simulation
- 7.4. Sensing
- 7.5. The Electric Field Sensitive Field Effect Transistor (eFET)
- 7.6. The Differential Electric Field Sensitive Field Effect Transistor (DeFET)
- 7.7. DeFET Theory of Operation
- 7.8. Modeling the DeFET
- 7.8.1. A Simple DC Model
- 7.8.2. SPICE DC Equivalent Circuit
- 7.8.3. AC Equivalent Circuit
- 7.9. The Effect of the DeFET on the Applied Electric Field Profile
- References
- 8. Prototyping and Experimental Analysis
- 8.1. Testing the DeFET
- 8.1.1. The DC Response
- 8.1.2. The AC (Frequency) Response
- 8.1.3. Other Features of the DeFET
- 8.2. Noise Analysis
- 8.2.1. Noise Sources
- 8.2.2. Noise Measurements
- 8.3. The Effect of Temperature and Light on DeFET Performance
- 8.4. Testing the Electric Field Imager
- 8.4.1. The Response of the Imager Under Different Environments
- 8.4.2. Testing the Imager with Biocells
- 8.5. Packaging the Lab-on-a-Chip
- References
- 9. Readout Circuits for Lab-on-a-Chip
- 9.1. Current-Mode Circuits
- 9.2. Operational Floating Current Conveyor (OFCC)
- 9.2.1. A Simple Model
- 9.2.2. OFCC with Feedback
- 9.3. Current-Mode Instrumentation Amplifier
- 9.3.1. Current-Mode Instrumentation Amplifier (CMIA) Based on CCII
- 9.3.2. Current-Mode Instrumentation Amplifier Based on OFCC
- 9.4. Experimental and Simulation Results of the Proposed CMIA
- 9.4.1. The Differential Gain Measurements
- 9.4.2. Common-Mode Rejection Ratio Measurements
- 9.4.3. Other Features of the Proposed CMIA
- 9.4.4. Noise Results
- 9.5. Comparison Between Different CMIAs
- 9.6. Testing the Readout Circuit with the Electric Field Based Lab-on-a-Chip
- References
- 10. Current-Mode Wheatstone Bridge for Lab-on-a-Chip Applications
- 10.1. Introduction
- 10.2. CMWB Based on Operational Floating Current Conveyor
- 10.3. A Linearization Technique Based on an Operational Floating Current Conveyor
- 10.4. Experimental and Simulation Results
- 10.4.1. The Differential Measurements
- 10.4.2. Common-Mode Measurements
- 10.5. Discussion
- References
- 11. Current-Mode Readout Circuits for the pH Sensor
- 11.1. Introduction
- 11.2. Differential ISFET-Based pH Sensor
- 11.2.1. ISFET-Based pH Sensor
- 11.2.2. Differential ISFET Sensor
- 11.3. pH Readout Circuit Based on an Operational Floating Current Conveyor
- 11.3.1. Simulation Results
- 11.4. pH Readout Circuit Using Only Two Operational Floating Current Conveyors
- 11.4.1. Simulation Results
- References.