Cargando…

Structured fluids : polymers, culloids, surfactants /

Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Witten, T. (Thomas A.)
Otros Autores: Pincus, P. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2010.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1 Overview; 1.1 Introduction; 1.2 A gallery of structured fluids; 1.2.1 Self-organization; 1.2.2 Rheology; 1.2.3 Scaling; 1.3 Types of structured fluids; 1.3.1 Colloids; 1.3.2 Aggregates; 1.3.3 Polymers; 1.3.4 Surfactant assemblies; 1.3.5 Association; 1.4 The chapters to follow; References; 2 Fundamentals; 2.1 Statistical physics; 2.1.1 Thermal equilibrium; 2.1.2 Probability and work; 2.1.3 Lattice gas; 2.1.4 Approach to equilibrium; 2.2 Magnitude of a liquid's response; 2.3 Experimental probes of structured fluids; 2.3.1 Macroscopic responses; 2.3.2 Probes of spatial structure
  • 2.3.3 Probes of atomic environmentSolution to Problem 2.1; References; 3 Polymer molecules; 3.1 Types of polymers; 3.1.1 Monomers; 3.1.2 Architecture; 3.1.3 Polymerization; 3.2 Random-walk polymer; 3.2.1 End-to-end probability; 3.3 Interior structure; 3.3.1 Scattering; 3.4 Self-avoidance and self-interaction; 3.4.1 Local and global avoidance; 3.4.2 Estimating D; 3.4.3 Self-interaction and solvent quality; 3.4.4 Universal ratios; 3.4.5 Polyelectrolytes; Appendix A: Dilation symmetry; Appendix B: Polymeric solvents and screening; References; 4 Polymer solutions; 4.1 Dilute solutions
  • 4.2 Semidilute solutions4.2.1 Structure; 4.2.2 Energy; 4.2.3 Concentrated solutions and melts; 4.3 Motion in a polymer solution; 4.3.1 Brownian motion of a sphere; 4.3.2 Intrinsic viscosity; 4.3.3 Polymer in dilute solution: hydrodynamic opacity; 4.3.4 Internal fluctuations; 4.3.5 Hydrodynamic screening; 4.3.6 Semidilute diffusion; 4.3.7 Semidilute self-diffusion without entanglement; 4.3.8 Motion with entanglements; 4.3.9 Stress relaxation and viscosity; 4.4 Conclusion; Appendix A: Origin of the Oseen tensor; Solution to Problem 4.5 (Deriving permeability); References; 5 Colloids
  • 5.1 Attractive forces: why colloids are sticky5.1.1 Induced-dipole interactions; 5.1.2 Solid bodies; 5.1.3 Perturbation-Attraction Theorem; 5.1.4 Depletion forces; 5.2 Repulsive forces; 5.2.1 Steric stabilization; 5.2.2 Electrostatic stabilization; 5.3 Organized states; 5.3.1 Colloidal crystals; 5.3.2 Lyotropic liquid crystals; 5.3.3 Fractal aggregates; 5.3.4 Anisotropic interactions; 5.4 Colloidal motion; 5.4.1 Electrophoresis; 5.4.2 Soret effect; Appendix A: Perturbation attraction in a square-gradient medium; Appendix B: Colloidal aggregates; References; 6 Interfaces
  • 6.1 Probes of an interface6.2 Simple fluids; 6.2.1 Interfacial energy; 6.2.2 Contact angle; 6.2.3 Wetting dynamics; 6.2.4 Surface heterogeneity; 6.2.5 Other interfacial flows; 6.3 Solutes and interfacial tension; 6.3.1 Fluid mixtures; 6.4 Polyatomic solutes; 6.4.1 Polymer adsorption; 6.4.2 Concentration profile; 6.4.3 Hard wall; 6.4.4 Kinetics of adsorption; 6.4.5 Surface interaction; 6.4.6 Flow; 6.5 Conclusion; References; 7 Surfactants; 7.1 Introduction; 7.2 Mixing principles; 7.2.1 Positivity; 7.2.2 Additivity; 7.2.3 Ordering: like dissolves like; 7.2.4 Reciprocity; 7.2.5 Transitivity