Creep and relaxation of nonlinear viscoelastic materials : with an introduction to linear viscoelasticity /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Dover,
1989, ©1976.
|
Colección: | Dover books on engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine derived contents note: Preface
- Chapter 1. Introduction
- 1.1 Elastic Behavior
- 1.2 Plastic Behavior
- 1.3 Viscoelastic Behavior
- 1.4 Creep
- 1.5 Recovery
- 1.6 Relaxation
- I.7 Linearity
- Chapter 2. Historical Survey Of Creep
- 2.1 Creep of Metals
- 2.2 Creep under Uniaxial Stress 2.3 Creep under Combined Stresses
- 2.4 Creep under Variable Stress
- 2.5 Creep of Plastics
- 2.6 Mathematical Representation of Creep of Materials
- 2.7 Differential Form
- 2.8 Integral Form
- 2.9 Development of Nonlinear Constitutive Relations CHAPTER 3. STATE OF STRESS AND STRAIN 3.1 State of Stress
- 3.2 Stress Tensor
- 3.3 Unit Tensor
- 3.4 Principal Stresses
- 3.5 Mean Normal Stress Tensor and Deviatoric Stress Tensor
- 3.6 Invariants of Stress
- 3.7 Traces of Tensors and Products of Tensors
- 3.8 Invariants in Terms of Traces
- 3.9 Hamilton-Cayley Equation
- 3.10 State of Strain
- 3.11 Strain-Displacement Relation
- 3.12 Strain Tensor
- Chapter 4. Mechanics Of Stress And Deformation Analyses
- 4.1 Introduction 4.2 Law of Motion
- CONTENTS ix
- 4.3 Equations of Equilibrium
- 4.4 Equilibrium of Moments
- 4.5 Kinematics
- 4.6 Compatibility Equations
- 4.7 Constitutive Equations
- 4.8 Linear Elastic Solid
- 4.9 Boundary Conditions
- 4.10 The Stress Analysis Problem in a Linear Isotropic Elastic Solid
- Chapter 5. Linear Viscoelastic Constitutive Equations
- 5.1 Introduction
- 5.2 Viscoelastic Models
- 5.3 The Basic Elements: Spring and Dashpot
- 5.4 Maxwell Model
- 5.5 Kelvin Model
- 5.6 Burgers or Four-element Model
- 5.7 Generalized Maxwell and Kelvin Models
- 5.8 Retardation Spectrum for tn
- 5.9 Differential Form of Constitutive Equations for Simple Stress States
- 5.10 Differential Form of Constitutive Equations for Multiaxial Stress States
- 5.11 Integral Representation of Viscoelastic Constitutive Equations
- 5.12 Creep Compliance
- 5.13 Relaxation Modulus
- 5.14 Boltzmann's Superposition Principle and Integral Representation
- 5.15 Relation Between Creep Compliance and Relaxation Modulus
- 5.16 Generalization of the Integral Representation to Three-Dimensions
- 5.17 Behavior of Linear Viscoelastic Material under Oscillating Loading
- 5.18 Complex Modulus and Compliance
- 5.19 Dissipation
- 5.20 Complex Compliance and Complex Modulus of Some Viscoelastic Models
- 5.21 Maxwell Model
- 5.22 Kelvin Model
- 5.23 Burgers Model
- 5.24 Relation Between the Relaxation Modulus and the Complex RelaxaƯtion Modulus
- 5.25 Relation Between Creep Compliance and Ccmplex Compliance
- 5.26 Complex Compliance for In 5.27 Temperature Effect and Time-Temperature Superposition Principle CHAPTER 6. LINEAR VISCOELASTIC STRESS ANALYSIS 108
- 6.1 Introduction 108
- 6.2 Beam Problems 109
- 6.3 Stress Analysis of Quasi-static Viscoelastic Problems Using the Elastic-Viscoelastic Correspondence Principle 119
- 6.4 Thick-walled Viscoelastic Tube 122
- 6.5 Point Force Acting on the Surface of a Semi-infinite Viscoelastic Solid 128
- 6.6 Conduding Remarks 130
- x CONTENTS
- Chapter 7. Multiple Integral Representation
- 7.1 Introduction
- 7.2 Nonlinear Viscoelastic Behavior under Uniaxial Loading
- 7.3 Nonlinear Viscoelastic Behavior under Multiaxial Stress State
- 7.4 A Linearly Compressible Material 7.S Incompressible Material Assumption
- 7.6 Linearly Compressible 7.7 Constant Volume 7.8 Incompressible and Linearly Compressible Creep
- 7.9 Incompressible and Linearly Compressible Relaxation.