Linear algebra /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Ruso |
Publicado: |
New York :
Dover Publications,
1977.
|
Edición: | Rev. English ed. / |
Colección: | Dover books on mathematics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine derived contents note: chapter 1
- Determinants
- 1.1. Number Fields
- 1.2. Problems of the Theory of Systems of Linear Equations
- 1.3. Determinants of Order n
- 1.4. Properties of Determinants
- 1.5. Cofactors and Minors
- 1.6. Practical Evaluation of Determinants
- 1.7. Cramer's Rule
- 1.8. Minors of Arbitrary Order. Laplace's Theorem
- 1.9. Linear Dependence between Columns
- Problems
- chapter 2
- Linear Spaces
- 2.1. Definitions
- 2.2. Linear Dependence
- 2.3. "Bases, Components, Dimension"
- 2.4. Subspaces
- 2.5. Linear Manifolds
- 2.6. Hyperplanes
- 2.7. Morphisms of Linear Spaces
- Problems
- chapter 3
- Systems Of Linear Equations
- 3.1. More on the Rank of a Matrix
- 3.2. Nontrivial Compatibility of a Homogeneous Linear System
- 3.3. The Compatability Condition for a General Linear System
- 3.4. The General Solution of a Linear System
- 3.5. Geometric Properties of the Solution Space
- 3.6. Methods for Calculating the Rank of a Matrix
- Problems
- chapter 4
- Linear Functions Of A Vector Argument
- 4.1. Linear Forms
- 4.2. Linear Operators
- 4.3. Sums and Products of Linear Operators
- 4.4. Corresponding Operations on Matrices
- 4.5. Further Properties of Matrix Multiplication
- 4.6. The Range and Null Space of a Linear Operator
- 4.7. Linear Operators Mapping a Space Kn into Itself
- 4.8. Invariant Subspaces
- 4.9. Eigenvectors and Eigenvalues
- Problems
- chapter 5
- Coordinate Transformations
- 5.1. Transformation to a New Basis
- 5.2. Consecutive Transformations
- 5.3. Transformation of the Components of a Vector
- 5.4. Transformation of the Coefficients of a Linear Form
- 5.5. Transformation of the Matrix of a Linear Operator
- 5.6. Tensors
- Problems
- chapter 6
- The Canonical Form Of The Matrix Of A Linear Operator
- 6.1. Canonical Form of the Matrix of a Nilpotent Operator
- 6.2. Algebras. The Algebra of Polynomials
- 6.3. Canonical Form of the Matrix of an Arbitrary Operator
- 6.4. Elementary Divisors
- 6.5. Further Implications
- 6.6. The Real Jordan Canonical Form
- 6.7. "Spectra, Jets and Polynomials"
- 6.8. Operator Functions and Their Matrices
- Problems
- chapter 7
- Bilinear And Quadratic Forms
- 7.1. Bilinear Forms
- 7.2. Quadratic Forms
- 7.3. Reduction of a Quadratic Form to Canonical Form
- 7.4. The Canonical Basis of a Bilinear Form
- 7.5. Construction of a Canonical Basis by Jacobi's Method
- 7.6. Adjoint Linear Operators
- 7.7. Isomorphism of Spaces Equipped with a Bilinear Form
- 7.8. Multilinear Forms
- 7.9. Bilinear and Quadratic Forms in a Real Space
- Problems
- chapter 8
- Euclidean Spaces
- 8.1. Introduction
- 8.2. Definition of a Euclidean Space
- 8.3. Basic Metric Concepts
- 8.4. Orthogonal Bases
- 8.5. Perpendiculars
- 8.6. The Orthogonalization Theorem
- 8.7. The Gram Determinant
- 8.8. Incompatible Systems and the Method of Least Squares
- 8.9. Adjoint Operators and Isometry
- Problems
- chapter 9
- Unitary Spaces
- 9.1. Hermitian Forms
- 9.2. The Scalar Product in a Complex Space
- 9.3. Normal Operators
- 9.4. Applications to Operator Theory in Euclidean Space
- Problems
- chapter 10
- Quadratic Forms In Euclidean And Unitary Spaces
- 10.1. Basic Theorem on Quadratic Forms in a Euclidean Space
- 10.2. Extremal Properties of a Quadratic Form
- 10.3 Simultaneous Reduction of Two Quadratic Forms
- 10.4. Reduction of the General Equation of a Quadratic Surface
- 10.5. Geometric Properties.