Cargando…

Random processes for image and signal processing /

Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate stude...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dougherty, Edward R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Wash. : New York : SPIE Optical Engineering Press ; Institute of Electrical and Electronics Engineers, ©1999.
Colección:SPIE/IEEE series on imaging science & engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Chapter 1. Probability theory
  • Probability space
  • Events
  • Conditional probability
  • Random variables
  • Probability distributions
  • Probability densities
  • Functions of a random variable
  • Moments
  • Expectation and variance
  • Moment-generating function
  • Important probability distributions
  • Binomial distribution
  • Poisson distribution
  • Normal distribution
  • Gamma distribution
  • Beta distribution
  • Computer simulation
  • Multivariate distributions
  • Jointly distributed random variables
  • Conditioning
  • Independence
  • Functions of several random variables
  • Basic arithmetic functions of two random variables
  • Distributions of sums of independent random variables
  • Joint distributions of output random variables
  • Expectation of a function of several random variables
  • Covariance
  • Multivariate normal distribution
  • Laws of large numbers
  • Weak law of large numbers
  • Strong law of large numbers
  • Central limit theorem
  • Parametric estimation via random samples
  • Random-sample estimators
  • Sample mean and sample variance
  • Minimum-variance unbiased estimators
  • Method of moments
  • Order statistics
  • Maximum-likelihood estimation
  • Maximum-likelihood estimators
  • Additive noise
  • Minimum noise
  • Entropy
  • Uncertainty
  • Information
  • Entropy of a random vector
  • Source coding
  • Prefix codes
  • Optimal coding
  • Exercises for chapter 1.
  • Chapter 2. Random processes
  • Random functions
  • Moments of a random function
  • Mean and covariance functions
  • Mean and covariance of a sum
  • Differentiation
  • Differentiation of random functions
  • Mean-square differentiability
  • Integration
  • Mean ergodicity
  • Poisson process
  • One-dimensional Poisson model
  • Derivative of the Poisson process
  • Properties of Poisson points
  • Axiomatic formulation of the Poisson process
  • Wiener process and white noise
  • White noise
  • Random walk
  • Wiener process
  • Stationarity
  • Wide-sense stationarity
  • Mean-ergodicity for WS stationary processes
  • Covariance-ergodicity for WS stationary processes
  • Strict-sense stationarity
  • Estimation
  • Linear systems
  • Communication of a linear operator with expectation
  • Representation of linear operators
  • Output covariance
  • Exercises for chapter 2.
  • Chapter 3. Canonical representation
  • Canonical expansions
  • Fourier representation and projections
  • Expansion of the covariance function
  • Karhunen-Loeve expansion
  • The Karhunen-Loeve theorem
  • Discrete Karhunen-Loeve expansion
  • Canonical expansions with orthonormal coordinate functions
  • Relation to data compression
  • Noncanonical representation
  • Generalized Bessel inequality
  • Decorrelation
  • Trigonometric representation
  • Trigonometric Fourier series
  • Generalized Fourier coefficients for WS stationary processes
  • Mean-square periodic WS stationary processes
  • Expansions as transforms
  • Orthonormal transforms of random functions
  • Fourier descriptors
  • Transform coding
  • Karhunen-Loeve compression
  • Transform compression using arbitrary orthonormal systems
  • Walsh-Hadamard transform
  • Discrete cosine transform
  • Transform coding for digital images
  • Optimality of the Karhunen-Loeve transform
  • Coefficients generated by linear functionals
  • Coefficients from integral functionals
  • Generating bi-orthogonal function systems
  • Complete function systems
  • Canonical expansion of the covariance function
  • Canonical expansions from covariance expansions
  • Constructing canonical expansions for covariance functions
  • Integral canonical expansions
  • Construction via integral functional coefficients
  • Construction from a covariance expansion
  • Power spectral density
  • The power-spectral-density/autocorrelation transform pair
  • Power spectral density and linear operators
  • Integral representation of WS stationary random functions
  • Canonical representation of vector random functions
  • Vector random functions
  • Canonical expansions for vector random functions
  • Finite sets of random vectors
  • Canonical representation over a discrete set
  • Exercises for chapter 3.
  • Chapter 4. Optimal filtering
  • Optimal mean-square-error filters
  • Conditional expectation
  • Optimal nonlinear filter
  • Optimal filter for jointly normal random variables
  • Multiple observation variables
  • Bayesian parametric estimation
  • Optimal finite-observation linear filters
  • Linear filters and the orthogonality principle
  • Design of the optimal linear filter
  • Optimal linear filter in the jointly Gaussian case
  • Role of wide-sense stationarity
  • Signal-plus-noise model
  • Edge detection
  • Steepest descent
  • Steepest descent iterative algorithm
  • Convergence of the steepest-descent algorithm
  • Least-mean-square adaptive algorithm
  • Convergence of the LMS algorithm
  • Nonstationary processes
  • Least-squares estimation
  • Pseudoinverse estimator
  • Least-squares estimation for nonwhite noise
  • Multiple linear regression
  • Least-squares image restoration
  • Optimal linear estimation of random vectors
  • Optimal linear filter for linearly dependent observations
  • Optimal estimation of random vectors
  • Optimal linear filters for random vectors
  • Recursive linear filters
  • Recursive generation of direct sums
  • Static recursive optimal linear filtering
  • Dynamic recursive optimal linear filtering
  • Optimal infinite-observation linear filters
  • Wiener-Hopf equation
  • Wiener filter
  • Optimal linear filter in the context of a linear model
  • The linear signal model
  • Procedure for finding the optimal linear filter
  • Additive white noise
  • Discrete domains
  • Optimal linear filters via canonical expansions
  • Integral decomposition into white noise
  • Integral equations involving the autocorrelation function
  • Solution via discrete canonical expansions
  • Optimal binary filters
  • Binary conditional expectation
  • Boolean functions and optimal translation-invariant filters
  • Optimal increasing filters
  • Pattern classification
  • Optimal classifiers
  • Gaussian maximum-likelihood classification
  • Linear discriminants
  • Neural networks
  • Two-layer neural networks
  • Steepest descent for nonquadratic error surfaces
  • Sum-of-squares error
  • Error back-propagation
  • Error back-propagation for multiple outputs
  • Adaptive network design
  • Exercises for chapter 4.
  • Chapter 5. Random models
  • Markov chains
  • Chapman-Kolmogorov equations
  • Transition probability matrix
  • Markov processes
  • Steady-state distributions for discrete-time Markov chains
  • Long-run behavior of a two-state Markov chain
  • Classification of states
  • Steady-state and stationary distributions
  • Long-run behavior of finite Markov chains
  • Long-run behavior of Markov chains with infinite state spaces
  • Steady-state distributions for continuous-time Markov chains
  • Irreducible continuous-time Markov chains
  • Birth-death model-queues
  • Forward and backward Kolmogorov equations
  • Markov random fields
  • Neighborhood systems
  • Determination by conditional probabilities
  • Gibbs distributions
  • Random Boolean model
  • Germ-grain model
  • Vacancy
  • Hitting
  • Linear boolean model
  • Granulometries
  • Openings
  • Classification by granulometric moments
  • Adaptive reconstructive openings
  • Random sets
  • Hit-or-miss topology
  • Convergence and continuity
  • Random closed sets
  • Capacity functional
  • Exercises for chapter 5
  • Bibliography
  • Index.