Cargando…

Random processes for image and signal processing /

Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate stude...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dougherty, Edward R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Wash. : New York : SPIE Optical Engineering Press ; Institute of Electrical and Electronics Engineers, ©1999.
Colección:SPIE/IEEE series on imaging science & engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 KNOVEL_ocn631155257
003 OCoLC
005 20231027140348.0
006 m o d
007 cr un||||a|a||
008 100526s1999 waua ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d ZCU  |d J2I  |d CEF  |d OCLCQ  |d SPIES  |d EBLCP  |d E7B  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d KNOVL  |d OCLCQ  |d N$T  |d KNOVL  |d YDXCP  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCQ  |d OCLCO  |d BUF  |d AU@  |d OCLCQ  |d OCLCA  |d OCLCQ  |d BWN  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 435971872  |a 508394834  |a 645897492  |a 694911028  |a 761320739  |a 978052137  |a 1058127851  |a 1110258415 
020 |a 9780819478450  |q (electronic bk.) 
020 |a 0819478458  |q (electronic bk.) 
020 |a 9781615837359  |q (electronic bk.) 
020 |a 1615837353  |q (electronic bk.) 
020 |z 0819425133  |q (hardcover) 
020 |z 9780819425133  |q (hardcover) 
020 |z 0780334957  |q (IEEE) 
020 |z 9780780334953  |q (IEEE) 
024 7 |a 10.1117/3.268105  |2 doi 
029 1 |a AU@  |b 000048592709 
029 1 |a AU@  |b 000051588604 
029 1 |a GBVCP  |b 1018189513 
029 1 |a NZ1  |b 13245867 
029 1 |a NZ1  |b 14228649 
029 1 |a AU@  |b 000072984117 
035 |a (OCoLC)631155257  |z (OCoLC)435971872  |z (OCoLC)508394834  |z (OCoLC)645897492  |z (OCoLC)694911028  |z (OCoLC)761320739  |z (OCoLC)978052137  |z (OCoLC)1058127851  |z (OCoLC)1110258415 
037 |b Knovel Corporation  |n http://www.knovel.com 
042 |a dlr 
050 4 |a TA1637  |b .D685 1999 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.382/2/0151923  |2 21 
084 |a 31.70  |2 bcl 
049 |a UAMI 
100 1 |a Dougherty, Edward R. 
245 1 0 |a Random processes for image and signal processing /  |c Edward R. Dougherty. 
260 |a Bellingham, Wash. :  |b SPIE Optical Engineering Press ;  |a New York :  |b Institute of Electrical and Electronics Engineers,  |c ©1999. 
300 |a 1 online resource (xix, 592 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SPIE/IEEE series on imaging science & engineering 
504 |a Includes bibliographical references (pages 575-581) and index. 
505 0 |a Chapter 1. Probability theory -- Probability space -- Events -- Conditional probability -- Random variables -- Probability distributions -- Probability densities -- Functions of a random variable -- Moments -- Expectation and variance -- Moment-generating function -- Important probability distributions -- Binomial distribution -- Poisson distribution -- Normal distribution -- Gamma distribution -- Beta distribution -- Computer simulation -- Multivariate distributions -- Jointly distributed random variables -- Conditioning -- Independence -- Functions of several random variables -- Basic arithmetic functions of two random variables -- Distributions of sums of independent random variables -- Joint distributions of output random variables -- Expectation of a function of several random variables -- Covariance -- Multivariate normal distribution -- Laws of large numbers -- Weak law of large numbers -- Strong law of large numbers -- Central limit theorem -- Parametric estimation via random samples -- Random-sample estimators -- Sample mean and sample variance -- Minimum-variance unbiased estimators -- Method of moments -- Order statistics -- Maximum-likelihood estimation -- Maximum-likelihood estimators -- Additive noise -- Minimum noise -- Entropy -- Uncertainty -- Information -- Entropy of a random vector -- Source coding -- Prefix codes -- Optimal coding -- Exercises for chapter 1. 
505 8 |a Chapter 2. Random processes -- Random functions -- Moments of a random function -- Mean and covariance functions -- Mean and covariance of a sum -- Differentiation -- Differentiation of random functions -- Mean-square differentiability -- Integration -- Mean ergodicity -- Poisson process -- One-dimensional Poisson model -- Derivative of the Poisson process -- Properties of Poisson points -- Axiomatic formulation of the Poisson process -- Wiener process and white noise -- White noise -- Random walk -- Wiener process -- Stationarity -- Wide-sense stationarity -- Mean-ergodicity for WS stationary processes -- Covariance-ergodicity for WS stationary processes -- Strict-sense stationarity -- Estimation -- Linear systems -- Communication of a linear operator with expectation -- Representation of linear operators -- Output covariance -- Exercises for chapter 2. 
505 8 |a Chapter 3. Canonical representation -- Canonical expansions -- Fourier representation and projections -- Expansion of the covariance function -- Karhunen-Loeve expansion -- The Karhunen-Loeve theorem -- Discrete Karhunen-Loeve expansion -- Canonical expansions with orthonormal coordinate functions -- Relation to data compression -- Noncanonical representation -- Generalized Bessel inequality -- Decorrelation -- Trigonometric representation -- Trigonometric Fourier series -- Generalized Fourier coefficients for WS stationary processes -- Mean-square periodic WS stationary processes -- Expansions as transforms -- Orthonormal transforms of random functions -- Fourier descriptors -- Transform coding -- Karhunen-Loeve compression -- Transform compression using arbitrary orthonormal systems -- Walsh-Hadamard transform -- Discrete cosine transform -- Transform coding for digital images -- Optimality of the Karhunen-Loeve transform -- Coefficients generated by linear functionals -- Coefficients from integral functionals -- Generating bi-orthogonal function systems -- Complete function systems -- Canonical expansion of the covariance function -- Canonical expansions from covariance expansions -- Constructing canonical expansions for covariance functions -- Integral canonical expansions -- Construction via integral functional coefficients -- Construction from a covariance expansion -- Power spectral density -- The power-spectral-density/autocorrelation transform pair -- Power spectral density and linear operators -- Integral representation of WS stationary random functions -- Canonical representation of vector random functions -- Vector random functions -- Canonical expansions for vector random functions -- Finite sets of random vectors -- Canonical representation over a discrete set -- Exercises for chapter 3. 
505 8 |a Chapter 4. Optimal filtering -- Optimal mean-square-error filters -- Conditional expectation -- Optimal nonlinear filter -- Optimal filter for jointly normal random variables -- Multiple observation variables -- Bayesian parametric estimation -- Optimal finite-observation linear filters -- Linear filters and the orthogonality principle -- Design of the optimal linear filter -- Optimal linear filter in the jointly Gaussian case -- Role of wide-sense stationarity -- Signal-plus-noise model -- Edge detection -- Steepest descent -- Steepest descent iterative algorithm -- Convergence of the steepest-descent algorithm -- Least-mean-square adaptive algorithm -- Convergence of the LMS algorithm -- Nonstationary processes -- Least-squares estimation -- Pseudoinverse estimator -- Least-squares estimation for nonwhite noise -- Multiple linear regression -- Least-squares image restoration -- Optimal linear estimation of random vectors -- Optimal linear filter for linearly dependent observations -- Optimal estimation of random vectors -- Optimal linear filters for random vectors -- Recursive linear filters -- Recursive generation of direct sums -- Static recursive optimal linear filtering -- Dynamic recursive optimal linear filtering -- Optimal infinite-observation linear filters -- Wiener-Hopf equation -- Wiener filter -- Optimal linear filter in the context of a linear model -- The linear signal model -- Procedure for finding the optimal linear filter -- Additive white noise -- Discrete domains -- Optimal linear filters via canonical expansions -- Integral decomposition into white noise -- Integral equations involving the autocorrelation function -- Solution via discrete canonical expansions -- Optimal binary filters -- Binary conditional expectation -- Boolean functions and optimal translation-invariant filters -- Optimal increasing filters -- Pattern classification -- Optimal classifiers -- Gaussian maximum-likelihood classification -- Linear discriminants -- Neural networks -- Two-layer neural networks -- Steepest descent for nonquadratic error surfaces -- Sum-of-squares error -- Error back-propagation -- Error back-propagation for multiple outputs -- Adaptive network design -- Exercises for chapter 4. 
505 8 |a Chapter 5. Random models -- Markov chains -- Chapman-Kolmogorov equations -- Transition probability matrix -- Markov processes -- Steady-state distributions for discrete-time Markov chains -- Long-run behavior of a two-state Markov chain -- Classification of states -- Steady-state and stationary distributions -- Long-run behavior of finite Markov chains -- Long-run behavior of Markov chains with infinite state spaces -- Steady-state distributions for continuous-time Markov chains -- Irreducible continuous-time Markov chains -- Birth-death model-queues -- Forward and backward Kolmogorov equations -- Markov random fields -- Neighborhood systems -- Determination by conditional probabilities -- Gibbs distributions -- Random Boolean model -- Germ-grain model -- Vacancy -- Hitting -- Linear boolean model -- Granulometries -- Openings -- Classification by granulometric moments -- Adaptive reconstructive openings -- Random sets -- Hit-or-miss topology -- Convergence and continuity -- Random closed sets -- Capacity functional -- Exercises for chapter 5 -- Bibliography -- Index. 
520 |a Part of the SPIE/IEEE Series on Imaging Science and Engineering. This book provides a framework for understanding the ensemble of temporal, spatial, and higher-dimensional processes in science and engineering that vary randomly in observations. Suitable as a text for undergraduate and graduate students with a strong background in probability and as a graduate text in image processing courses. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
590 |a Knovel  |b ACADEMIC - Optics & Photonics 
650 0 |a Image processing  |x Statistical methods. 
650 0 |a Stochastic processes. 
650 0 |a Signal processing  |x Statistical methods. 
650 2 |a Stochastic Processes 
650 6 |a Traitement d'images  |x Méthodes statistiques. 
650 6 |a Processus stochastiques. 
650 6 |a Traitement du signal  |x Méthodes statistiques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Image processing  |x Statistical methods  |2 fast 
650 7 |a Signal processing  |x Statistical methods  |2 fast 
650 7 |a Stochastic processes  |2 fast 
650 7 |a Bildverarbeitung  |2 gnd 
650 7 |a Signalverarbeitung  |2 gnd 
650 7 |a Stochastischer Prozess  |2 gnd 
650 1 7 |a Stochastische processen.  |2 gtt 
650 1 7 |a Beeldverwerking.  |2 gtt 
650 1 7 |a Signaalverwerking.  |2 gtt 
650 7 |a Traitement du signal  |x Méthodes statistiques.  |2 ram 
650 7 |a Traitement d'images  |x Méthodes statistiques.  |2 ram 
650 7 |a Processus stochastiques.  |2 ram 
776 0 8 |i Print version:  |a Dougherty, Edward R.  |t Random processes for image and signal processing.  |d Bellingham, Wash. : SPIE Optical Engineering Press ; New York : Institute of Electrical and Electronics Engineers, ©1999  |w (DLC) 97042909  |w (OCoLC)37769926 
830 0 |a SPIE/IEEE series on imaging science & engineering. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpRPISP001/toc  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL728495 
938 |a ebrary  |b EBRY  |n ebr10561612 
938 |a EBSCOhost  |b EBSC  |n 858331 
938 |a Society of Photo-Optical Instrumentation Engineers  |b SPIE  |n 9780819478450 
938 |a YBP Library Services  |b YANK  |n 9339711 
994 |a 92  |b IZTAP