EUV sources for lithography /
This comprehensive volume, edited by a senior technical staff member at SEMATECH, is the authoritative reference book on EUV source technology. The volume contains 38 chapters contributed by leading researchers and suppliers in the EUV source field. Topics range from a state-of-the-art overview and...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bellingham, Wash. :
SPIE,
©2006.
|
Colección: | SPIE monograph ;
PM149. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface / Vivek Bakshi
- Introduction / Kevin Kemp
- List of contributors
- List of abbreviations.
- Section I. Introduction and technology review
- Chapter 1. EUV source technology: challenges and status / Vivek Bakshi
- 1.1. Introduction
- 1.2. Conversion efficiency of EUV sources
- 1.3. EUV source power
- 1.4. Source components and their lifetimes
- 1.5. Summary and future outlook
- References.
- Chapter 2. EUV source requirements for EUV lithography / Kazuya Ota, Yutaka Watanabe, Vadim Banine, and Hans Franken
- 2.1. Introduction and background
- 2.2 Source requirements
- 2.3. Component degradation
- 2.4. Cost of ownership
- 2.5. Conclusions
- Acknowledgments
- References.
- Section II. Fundamentals and modeling
- Chapter 3. Atomic Xenon data / John D. Gillaspy
- 3.1. Introduction
- 3.2. Specification of the subtypes of fundamental atomic data needed
- 3.3. Overview and current status of available data for Xenon (q=7 to q=18)
- 3.4. References to data for the less-critical charge states (q<7 or q>18) of Xenon
- 3.5. Benchmarking input data
- 3.6. Benchmarking output data
- 3.7. Outlook and future data needs
- Acknowledgments
- References (for main text)
- Appendix A: International SEMATECH's fundamental data
- Working group
- Appendix B: Xenon atomic data.
- Chapter 4. Atomic tin data / I. Yu. Tolstikhina, S.S. Churilov, A.N. Ryabtsev, and K.N. Koshelev
- 4.1. Introduction
- 4.2. Theoretical approach
- 4.3. Results of the calculations
- 4.4. Registration of Sn plasma spectra
- 4.5. Primary classification on charge states
- 4.6. Conclusion
- Acknowledgments
- Appendix: Results of theoretical calculations of Sn ion spectra
- References.
- Chapter 5. Atomic physics of highly charged ions and the case for Sn as a source material / Gerry O'Sullivan, Anthony Cummings, Padraig Dunne, Patrick Hayden, Luke McKinney, Nicola Murphy, and John White
- 5.1. Introduction and background
- 5.2. The case for Xenon
- 5.3. Alternatives to Xenon; the case for Tin
- 5.4. Conclusions
- Acknowledgments
- References.
- Chapter 6. Radiative collapse in Z pinches / K.N. Koshelev, H.-J. Kunze, R. Gayazov, V. Gomozov, V.V. Ivanov, V.G. Koloshnikov, E.D. Korop, V. Krivtsun, Yu. V. Sidelnikov, O. Yakushev, and G.G. Zukakishvili
- 6.1. Introduction
- 6.2. Formation of pinch columns
- 6.3. Discharge source for EUVL: high-power, high-CE alternative concept source
- 6.4. Neck instabilities in pinch plasmas: radiative collapse
- 6.5. Plasma-column energy balance; Pease-Braginskii current; critical current for heavy-ion plasmas
- 6.6. Neck development scenario
- 6.7. Experimental observation of neck instabilities; plasma outflow
- 6.8. Dissipation of electrical energy in the discharge
- 6.9. Equilibrium radius; EUV source size
- 6.10. Equilibrium radius versus linear density trajectory
- 6.11. Stability of radiative-collapse trajectory, EUV yield, and shot-to-shot reproducibility
- 6.12. Axial size of the EUV source; zippering effect
- 6.13. Conclusions
- Acknowledgments
- References.
- Chapter 7. Fundamentals and limits of plasma-based EUV sources / Rainer Lebert, Thomas Krücken, and H.-J. Kunze
- 7.1. Introduction
- 7.2. Required parameters of EUV sources
- 7.3. Fundamental limits
- 7.4. Fundamental processes
- 7.5. Factors influencing the radiative yield
- 7.6. Plasma simulation: tool for source optimization
- 7.7. Atomic physics, radiation, and ionization modeling
- 7.8. MHD description of the pinch phase of the discharge
- 7.9. Other important issues
- Acknowledgments
- References.
- Chapter 8. Z code for DPP and LPP source modeling / Sergey V. Zakharov, Vladimir G. Novikov, and Peter Choi
- 8.1. Introduction
- 8.2. Fundamentals of the physics of EUV-emitting plasmas
- 8.3. Computational RMHD code Z
- 8.4. EUV radiation source simulations
- 8.5. Summary
- Acknowledgments
- Appendix A. Analytical solution for the axially inhomogenous capillary discharge
- Appendix B. Estimations for the motion dynamics of a sheath in the ionized gas via the snowplow model
- Appendix C. Calculation of the laser energy transport process
- References.
- Chapter 9. HEIGHTS-EUV package for DPP source modeling / A. Hassanein, V. Morozov, V. Sizyuk, V. Tolkach, and B. Rice
- 9.1. Introduction
- 9.2. Magnetohydrodynamics
- 9.3. External electric circuit
- 9.4. Detailed radiation transport
- 9.5. Atomic physics and opacities
- 9.6. Results and discussion
- 9.7. Conclusion
- Acknowledgments
- References.
- Chapter 10. Modeling LPP sources / Moza Al-Rabban, Martin Richardson, Howard Scott, Franck Gilleron, Michel Poirier, and Thomas Blenski
- 10.1. Introduction
- 10.2. EUVL source requirements
- 10.3. Physical processes in laser plasmas
- 10.4. Modeling laser-target interactions and plasma expansion
- 10.5. Atomic physics modeling of laser plasmas
- 10.6. Future trends
- Acknowledgments
- References.
- Chapter 11. Conversion efficiency of LPP sources / Katsunobu Nishihara, Akira Sasaki, Atsushi Sunahara, and Takeshi Nishikawa
- 11.1. Introduction
- 11.2. Design window for practical use
- 11.3. Power balance model
- 11.4. Atomic models and radiation hydrodynamic code
- 11.5. Conversion efficiency for tin and Xenon
- 11.6. Discussion and summary
- Acknowledgments
- References.
- Section III. Plasma pinch sources
- Chapter 12. Dense plasma focus source / Igor V. Fomenkov, William N. Partlo, Norbert R. Böwering, Oleg V. Khodykin, Curtis L. Rettig, Richard M. Ness, Jerzy R. Hoffman, Ian R. Oliver, and Stephan T. Melnychuk
- 12.1. Introduction
- 12.2. Overview of the source
- 12.3. Pulsed-power development
- 12.4. EUV output energy and conversion efficiency
- 12.5. Operation at high repetition rates
- 12.6. Thermal management
- 12.7. EUV source size and spatial and angular distribution
- 12.8. EUV spectra
- 12.9. Spectral and plasma modeling
- 12.10. Metal target elements
- 12.11. Debris mitigation and contamination studies
- 12.12. EUV collector
- 12.13. Lifetime limitations and power scaling
- 12.14. Summary and conclusion
- Acknowledgments
- References.
- Chapter 13. Hollow-cathode-triggered plasma pinch discharge / Joseph Pankert, Klaus Bergmann, Rolf Wester, Jürgen Klein, Willi Neff, Oliver Rosier, Stefan Seiwert, Christopher Smith, Sven Probst, Dominik Vaudrevange, Guido Siemons, Rolf Apetz, Jeroen Jonkers, Michael Loeken, Günther Derra, Thomas Krücken, and Peter Zink
- 13.1. Introduction
- 13.2. Physics of EUV sources based on hollow-cathode-triggered gas discharges
- 13.3. The Philips HCT source: design and results
- 13.4. Summary and outlook
- Acknowledgments
- References.
- Chapter 14. High-power GDPP Z-pinch EUV source technology / Uwe Stamm, Guido Schriever, and Jürgen Kleinschmidt
- 14.1. Introduction
- 14.2. Physics of the Z-pinch discharge and EUV generation
- 14.3. Emitter materials for 13.5-nm Z-pinch sources
- 14.4. Discharge electrode system, source collector, and electrode lifetime
- 14.5. Pulsed power excitation of Z pinches
- 14.6. Discharge-electrode thermal management technology
- 14.7. Debris mitigation and collector-optics protection
- 14.8. First commercial sources for exposure tools, EUV source XTS 13-35
- 14.9. Scaling of Z-pinch power and lifetime performance to [beta]-tool and HVM requirements
- 14.10. Path to meet remaining challenges for HVM GDPP sources, lifetime improvement of discharge electrode system and source collector optics for tin fuel
- 14.11. Summary and conclusion
- Acknowledgments
- References.
- Chapter 15. Star pinch EUV source / Malcolm W. McGeoch
- 15.1. Generic EUV source factors
- 15.2. Directed discharges
- 15.3. Current star pinch performance
- 15.4. Scaling to high-volume manufacturing
- References.
- Chapter 16. Xenon and tin pinch discharge sources / Vladimir M. Borisov, Andrey I. Demin, Alexander V. Eltsov, Alexander S. Ivanov, Yuriy B. Kiryukhin, Oleg B. Khristoforov, Valentin A. Mishchenko, Alexander V. Prokofiev, Alexander Yu. Vinokhodov, and Vladimir A. Vodchits
- 16.1. Introduction
- 16.2. Pinch effect
- 16.3. EUV source using Xe
- 16.4. Some approaches to meet HVM requirements
- 16.5. Pinch discharges based on Sn vapor and gas mixtures
- 16.6. Excimer-laser-initiated pinch discharge in Sn
- 16.7. Conclusions
- Acknowledgments
- References.
- Chapter 17. Capillary Z-pinch source / Yusuke Teramoto, Hiroto Sato, and Masaki Yoshioka
- 17.1. Introduction
- 17.2. Discharge head and magnetic pulse compression generator
- 17.3. Diagnostics
- 17.4. Experimental results
- 17.5. Conclusions
- Acknowledgments
- References.
- Chapter 18. Plasma capillary source / Željko Andreic, Samir Ellwi, and H.-J. Kunze
- 18.1. Introduction
- 18.2. Theoretical modeling
- 18.3. Gas-filled capillaries
- 18.4. Ablative capillary discharges
- 18.5. Different additives
- 18.6. Conclusion
- Acknowledgments
- References.
- Section IV. Laser-produced plasma (LPP) sources
- Chapter 19. Technology for LPP sources / Uwe Stamm and Kai Gäbel
- 19.1. Introduction
- 19.2. Physics of LPP-based EUV generation
- 19.3. Laser target modifications and target handling
- 19.4. Laser-driver technology for LPP EUV sources
- 19.5. CE and output power, experimental data
- 19.6. Etendue, source size, and source collector
- 19.7. Scaling of performance to HVM
- 19.8. Summary and conclusion
- Acknowledgments
- References.
- Chapter 20. Spatially and temporally multiplexed laser modules for LPP sources / Samir Ellwi, Andrew J. Comley, and Michael Brownell
- 20.1. Introduction
- 20.2. Laser technology
- 20.3. Target design and vacuum environment
- 20.4. Conclusion
- Acknowledgments
- References.
- Chapter 21. Modular LPP source / Martin Schmidt, Benoit Barthod, Tibério Ceccotti, Guy Cheymol, Jean-François Hergott, Olivier Sublemontier, Pierre-Yves Thro, Philippe Cormont, Jacky Skrzypczak, and Thierry Auguste
- 21.1. Introduction
- 21.2. Designing a modular LPP source
- 21.3. The ELSAC LPP source developed by Exulite
- 21.4. Conclusion
- Acknowledgments
- References.
- Chapter 22. Driver laser, Xenon target, and system development for LPP sources / Akira Endo
- 22.1. Introduction
- 22.2. High-power driver laser
- 22.3. Xenon targets
- 22.4. Light-source EUV characteristics
- 22.5. Summary
- Acknowledgment
- References.
- Chapter 23. Liquid-Xenon-Jet LPP source / Björn A.M. Hansson and Hans M. Hertz
- 23.1. Introduction
- 23.2. Liquid-Xenon-Jet laser plasma generation
- 23.3. Source requirements and design example
- 23.4. Source characterization
- 23.5. Lifetime
- 23.6. Summary
- Acknowledgments
- References.
- Chapter 24. LPP source development and operation in the engineering test stand / John E.M. Goldsmith, Glenn D. Kubiak, and William P. Ballard
- 24.1. Introduction
- 24.2. Early source development at Sandia
- 24.3. ETS source development
- 24.4. Integration of the high-power source into the ETS
- 24.5. ETS operation with the high-power source
- 24.6. Conclusion
- Acknowledgments
- References.
- Chapter 25. Xenon target and high-power laser module development for LPP sources / Richard Moyer, Harry Shields, Steven Fornaca, Randall St. Pierre, Armando Martos, James Zamel, Fernando Martos, Samuel Ponti, R.D. McGregor, Mark Michaelian, Jeffrey Hartlove, Stuart McNaught, Lawrence Iwaki, Rocco Orsini, Michael Petach, Mark Thomas, Armando Villarreal, and Vivek Bakshi
- 25.1. Introduction
- 25.2. Laser module
- 25.3. Xenon target development
- 25.4. System development and performance
- 25.5. Conclusions
- Acknowledgments
- References.
- Chapter 26. Laser plasma EUV sources based on droplet target technology / Martin Richardson, Chiew-Seng Koay, Kazutoshi Takenoshita, Christian Keyser, Simi George, Moza Al-Rabban, and Vivek Bakshi
- 26.1. Introduction
- 26.2. Laser interaction with mass-limited spherical targets
- 26.3. Plasma dynamics of droplet laser plasmas
- 26.4. EUV emission from laser plasma droplet sources
- 26.5. Ion emission from droplet laser plasmas
- 26.6. Particle emission from laser plasmas
- 26.7. Inhibition of ion and particle emission
- 26.8. High-power and long-life target scenarios
- 26.9. Summary
- Acknowledgments
- References.
- Section V. EUV source metrology
- Chapter 27. Flying circus EUV source metrology and source development assessment / Fred Bijkerk, Santi Alonso van der Westen, Caspar Bruineman, Robert Huiting, René de Bruijn, and Remko Stuik
- 27.1. Historical overview of metrology development and standardization
- 27.2. Metrology concept
- 27.3. EUV source metrology calibration procedures
- 27.4. FC source progress assessment
- 27.5. Diagnostic extensions and new developments
- 27.6. Summary and future directions
- Acknowledgments
- References.
- Chapter 28. Plasma diagnostic techniques / Eric C. Benck
- 28.1. Introduction
- 28.2. Surface accumulators
- 28.3. Plasma imaging
- 28.4. Electron diagnostics
- 28.5. Ion diagnostics
- 28.6. Neutral-atom detectors
- 28.7. Summary
- Acknowledgments
- References.
- Chapter 29. Metrology for EUVL sources and tools / Steve Grantham, Charles Tarrio, Robert Vest, and Thomas Lucatorto
- 29.1. Introduction
- 29.2. NIST EUV sources for metrology
- 29.3. Inband EUV power instrumentation
- 29.4. Reflectometry
- 29.5. Detector characterization
- 29.6. Calibration of EUV radiometry tools
- 29.7. Conclusion
- References.
- Chapter 30. Calibration of detectors and tools for EUV-source metrology / Frank Scholze and Gerhard Ulm
- 30.1. Introduction
- 30.2. Synchrotron radiation beamlines for EUV metrology
- 30.3. Instrumentation for detector calibration and optics characterization
- 30.4. Semiconductor photodiodes as reference detector standards
- 30.5. Spectrally filtered tools and spectrographs
- 30.6. Conclusions and future needs
- Acknowledgments
- References.
- Section VI. Other types of EUV sources
- Chapter 31. Electron-based EUV sources for at-wavelength metrology / André Egbert and Boris N. Chichkov
- 31.1. The EUV tube, an old solution for new applications
- 31.2. Characteristics of the EUV tube
- 31.3. Applications of the EUV tube
- 31.4. Summary and outlook
- Acknowledgments
- References.
- Chapter 32. Synchrotron radiation sources for EUVL applications / Obert R. Wood, II and Alastair A. MacDowell
- 32.1. Electron storage rings and synchrotron radiation
- 32.2. Characteristics of synchrotron radiation
- 32.3. Survey of current synchrotron radiation facilities
- 32.4. Selected applications of synchrotron radiation in EUVL
- 32.5. Conclusions and suggestions for future work
- References.
- Section VII. EUV source components
- Chapter 33. Grazing-incidence EUV collectors / Piotr Marczuk and Wilhelm Egle
- 33.1. Introduction
- 33.2. EUV collectors: general considerations
- 33.3. Grazing-incidence EUV collectors
- 33.4. Summary, trends, and challenges
- Acknowledgments
- References.
- Chapter 34. Collection efficiency of EUV sources / Günther Derra and Wolfgang Singer
- 34.1. Introduction
- 34.2. Etendue of illumination systems
- 34.3. Determination of EUV source power
- 34.4. Example measurements at the HCT pinch
- 34.5. Conclusions
- Acknowledgments
- References.
- Chapter 35. Electrode and condenser materials for plasma pinch sources / A. Hassanein, J.P. Allain, T. Burtseva, Z. Insepov, J.N. Brooks, I. Konkashbaev, V. Morozov, V. Sizyuk, V. Tolkach, T. Sizyuk, B. Rice, V. Safronov, and V. Bakshi
- 35.1. Introduction
- 35.2. Electrode thermal response
- 35.3. Materials selection for plasma pinch sources
- 35.4. Testing of materials in plasma-gun facilities
- 35.5. Modeling and testing condenser-optic response
- 35.6. Conclusions
- References.
- Chapter 36. Origin of debris in EUV sources and its mitigation / David N. Ruzic
- 36.1. Introduction
- 36.2. Source terms
- 36.3. Standard mitigation techniques
- 36.4. Mitigation through plasma-based secondary ionization
- 36.5. Mitigation through manipulating the optical elements
- Acknowledgments
- References.
- Chapter 37. Erosion of condenser optics exposed to EUV sources / Leonard E. Klebanoff, Richard J. Anderson, Dean A. Buchenauer, Neal R. Fornaciari, and Hiroshi Komori
- 37.1. Introduction
- 37.2. Early work on condenser erosion
- 37.3. Condenser erosion observations in the ETS
- 37.4. Condenser erosion study systems after the ETS
- 37.5. Erosion studies of EUVA
- 37.6. Work in other laboratories
- Acknowledgments
- References.
- Chapter 38. Potential energy sputtering of EUVL materials / Joshua M. Pomeroy, Laura P. Ratliff, John D. Gillaspy, and Saa Bajt
- 38.1. Introduction
- 38.2. Interactions of HCIs with solids
- 38.3. Experimental studies of PE damage to EUVL devices
- 38.4. Implications and outlook
- 38.5. Summary
- Acknowledgments
- References
- Index.