Cargando…

Fundamental optical design /

This book provides all the essential and best elements of Kidger's many courses taught worldwide on lens and optical design. It is written in a direct style that is compact, logical, and to the point--a tutorial in the best sense of the word. "I read my copy late last year and read it stra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kidger, Michael J.
Autor Corporativo: Society of Photo-Optical Instrumentation Engineers
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bellingham, Wash. : SPIE, ©2002.
Colección:SPIE monograph ; PM92.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Chapter 1. Geometrical optics
  • Coordinate system and notation
  • The rectilinear propagation of light
  • Snell's law
  • Fermat's principle
  • Rays and wavefronts, the theorem of Malus and Dupin
  • Stops and pupils
  • Marginal and chief rays
  • Entrance and exit pupils
  • Field stops
  • Surfaces
  • Spheres
  • Quadrics of revolution (paraboloids, ellipsoids, hyperboloids)
  • Oblate ellipsoid
  • The hyperbola
  • Axicon
  • References
  • Chapter 2. Paraxial optics
  • Paraxial rays
  • The sign convention
  • The paraxial region
  • The cardinal points
  • Principal points
  • Nodal points
  • Paraxial properties of a single surface
  • Paraxial ray tracing
  • Discussion of the use of paraxial ray trace equations
  • The Lagrange invariant
  • Transverse (lateral) magnification
  • Afocal systems and angular magnification
  • Newton's conjugate distance equation
  • Further discussion of the cardinal points
  • The combination of two lenses
  • The thick lens
  • System of several elements
  • The refraction invariant, A
  • Other expressions for the Lagrange invariant
  • The eccentricity, E
  • The determination of E
  • References
  • Chapter 3. Ray tracing
  • Introduction
  • A simple trigonometric method of tracing meridian rays
  • The vector form of Snell's law
  • Definition of direction cosines
  • Ray tracing (algebraic method)
  • Precision
  • Calculation of wavefront aberration (optical path difference)
  • Ray tracing through aspheric and toroidal surfaces
  • Decentered and tilted surfaces
  • Ray tracing at reflecting surfaces
  • References.
  • Chapter 4. Aberrations
  • The relationship between transverse and wavefront aberrations
  • Ray aberration plots
  • Spot diagrams
  • Aberrations of centered optical systems
  • First-order aberrations
  • Defocus
  • Lateral image shift
  • The five monochromatic third-order (Seidel) aberrations
  • Spherical aberration
  • Coma
  • Astigmatism and field curvature
  • Distortion
  • The finite conjugate case
  • The infinite conjugate case
  • The afocal case
  • Effect of pupil aberrations and defocus on
  • Distortion
  • F-theta lenses
  • Effect of a curved object on distortion
  • Higher-order aberrations
  • Balancing spherical aberration
  • Balancing coma
  • Balancing astigmatism and field curvature
  • Balancing distortion
  • Modulation transfer function (MTF)
  • Theory
  • The geometrical approximation
  • Practical calculation
  • The diffraction limit
  • References
  • Chapter 5. Chromatic aberration
  • Variation of refractive index, dispersion
  • Longitudinal chromatic aberration (axial color) of a thin lens
  • The Abbe V-value
  • Secondary spectrum
  • Transverse chromatic aberration (lateral color)
  • The Conrady method for calculation of chromatic aberration
  • Chromatic variation of aberrations
  • References.
  • Chapter 6. Seidel aberrations
  • Introduction
  • Seidel surface contributions
  • Spherical aberration
  • Off-axis Seidel aberrations
  • Alternative formula for distortion
  • Aberrations of a plano-convex singlet
  • First-order axial color and lateral color
  • Summary of the Seidel surface coefficients
  • A numerical example
  • Stop-shift effects
  • Derivation of the Seidel stop-shift equations
  • Dependence of the Seidel aberrations on surface curvature
  • The aplanatic surface
  • An example: the classical oil-immersion microscope
  • Objective
  • Zero Seidel conditions
  • "Undercorrected" and "overcorrected" aberrations
  • Seidel aberrations of spherical mirrors
  • Seidel aberration relationships
  • Wavefront aberrations
  • Transverse ray aberrations
  • The Petzval sum and the Petzval surface
  • The Petzval surface and astigmatic image surfaces
  • Pupil aberrations
  • Conjugate-shift effects
  • References.
  • Chapter 7. Principles of lens design
  • Thin lenses
  • Thin lens at the stop
  • Spherical aberration
  • Coma
  • Astigmatism
  • Field curvature
  • Distortion
  • Axial color
  • Lateral color
  • Discussion of the thin-lens Seidel aberrations
  • Spherical aberration
  • Bending for minimum spherical aberration
  • Effect of refractive index
  • Effect of change of conjugates
  • Correction of spherical aberration with two positive
  • Lenses
  • Correction of spherical aberration with positive and
  • Negative lenses
  • Seidel aberrations of thin lenses not at the stop
  • Correction of coma
  • Correction of astigmatism
  • Correction of field curvature
  • Different refractive indices
  • Separated lenses
  • Thick meniscus lens
  • Reduction of aberrations by splitting lenses into two
  • Seidel aberrations of a thin lens that is not at the stop
  • Correction of axial and lateral color
  • Shape-dependent and shape-independent aberrations
  • Aspheric surfaces
  • Third-order off-axis aberrations of an aspheric plate
  • Chromatic effects
  • The sine condition
  • Sine condition in the finite conjugate case
  • The sine condition with the object at infinity
  • The sine condition for the afocal case
  • Other design strategies
  • Monocentric systems
  • Use of front-to-back symmetry
  • References.
  • Chapter 8. Achromatic doublet objectives
  • Seidel analysis
  • Correction of chromatic aberration
  • Astigmatism and field curvature
  • Comparison with the actual aberrations of a doublet
  • Correcting both Petzval sum and axial color in doublets
  • Possibilities of aberration correction in doublets
  • The cemented doublet
  • Optimization of cemented doublets
  • Crown-first doublet
  • Flint-first doublet
  • The split doublet
  • The split Fraunhofer doublet
  • The split Gauss doublet
  • General limitations of doublets
  • Chapter 9. Petzval lenses and telephoto objectives
  • Seidel analysis
  • Calculation of predicted transverse aberrations from Seidel
  • Coefficients
  • Optimization
  • Examples
  • Simple Petzval lens with two doublets
  • Petzval lens with curved image surface
  • Petzval lens with field flattener
  • The telephoto lens
  • Chapter 10. Triplets
  • Seidel theory
  • Example of an optimized triplet
  • Glass choice
  • Vignetting.
  • Chapter 11. Eyepieces and afocal systems
  • Eyepieces, design considerations
  • Specification of an eyepiece
  • Focal length
  • Field angle
  • Pupil diameter
  • Exit pupil position ("eye relief")
  • Aberration considerations
  • Prism aberrations
  • Pupil spherical aberration
  • Distortion
  • Field curvature
  • Special factors in optimization
  • General comments on eyepieces
  • Simple eyepiece types
  • The Ramsden eyepiece
  • The achromatized Ramsden, or Kellner, eyepiece
  • The Ploessl eyepiece
  • The Erfle eyepiece
  • Afocal systems for the visible waveband
  • Simple example of a complete telescopic system
  • More complex example of a telescopic system
  • Galilean telescopes
  • Magnifiers
  • References
  • Chapter 12. Thermal imaging lenses
  • Photon detection
  • 8- to 13- um waveband
  • 3- to 5- um waveband
  • Single-material lenses
  • Single germanium lens
  • Germanium doublets
  • Plus-minus germanium doublet solution
  • Plus-plus germanium doublet solution
  • Germanium Petzval lens
  • Germanium triplet
  • Multiple-material lenses
  • Infrared afocal systems
  • The objective
  • The eyepiece
  • Optimization and analysis
  • Other aspects of thermal imaging
  • Narcissus effect
  • Thermal effects
  • Special optical surfaces
  • References.
  • Chapter 13. Catadioptric systems
  • General considerations
  • Reminder of Seidel theory, spherical aberration, S1
  • Correction of field curvature, S4
  • General topics relating to computations with catadioptric systems
  • Baffles
  • Simple examples
  • Cassegrain telescope
  • Field corrector for a Cassegrain telescope
  • Coma corrector for a paraboloidal mirror
  • Field corrector for a paraboloidal mirror
  • The Ritchey-Chrétien telescope
  • Field corrector for a Ritchey-Chrétien telescope
  • Field corrector for a hyperbolic mirror
  • Schmidt camera
  • The achromatized Schmidt camera
  • The field-flattened Schmidt camera
  • The Maksutov-Bouwers Cassegrain system
  • A simple Mangin mirror system by Wiedemann
  • More complex examples
  • Canzek Mangin system
  • Mirror telephoto lens
  • References
  • Index.