Cargando…

Principles of welding : processes, physics, chemistry, and metallurgy /

"Despite the critically important role welding plays in nearly every type of human endeavor, most books on this process either focus on basic technical issues and leave the science out, or vice versa. In Principles of Welding, industry expert and prolific technical speaker Robert W. Messler, Jr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Messler, Robert W., Jr., 1942-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : John Wiley, Ã1999.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • I. THE PROCESS AND PROCESSES OF WELDING
  • II. THE PHYSICS OF WELDING
  • III. THE CHEMISTRY OF WELDING
  • IV. THE METALLURGY OF WELDING.
  • I. THE PROCESS AND PROCESSES OF WELDING
  • 1. INTRODUCTION TO THE PROCESS OF WELDING
  • 1.1. What Is Welding?
  • 1.2. The Evolution of Welding as a Process
  • 1.3. The Nature of an Ideal Weld: Achieving Continuity
  • 1.4. Impediments to Making Ideal Welds in the Real World
  • 1.5. What It Takes to Make a Real Weld
  • 1.6. Advantages and Disadvantages of Welding
  • 1.7. Summary
  • 2. CLASSIFYING WELDING PROCESSES
  • 2.1. Why Classify Processes?
  • 2.2. Mechanisms for Obtaining Material Continuity
  • 2.3. The Roles of Temperature and Pressure
  • 2.4. Alternative Bases for Classification
  • 2.4.1. Fusion Versus Nonfusion
  • 2.4.2. Pressure Versus Nonpressure
  • 2.4.3. Energy Sources for Welding
  • 2.4.4. Interface Relationships and Classification by Energy Transfer Processes
  • 2.4.5. Other Bases for Classification and Subclassification
  • 2.5. Allied Processes
  • 2.6. The AWS Classification Scheme
  • 2.7. Summary
  • 3. FUSION WELDING PROCESSES
  • 3.1. General Description of Fusion Welding Processes
  • 3.2. Chemical Fusion Welding Processes
  • 3.2.1. Oxyfuel Gas Welding
  • 3.2.2. Aluminothermic Welding
  • 3.3. Electric Arc Welding Processes
  • 3.3.1. Nonconsumable Electrode Arc Welding Processes
  • 3.3.1.1. Gas-Tungsten Arc Welding
  • 3.3.1.2. Plasma Arc Welding
  • 3.3.1.3. Magnetically Impelled Arc Butt Welding
  • 3.3.2. Consumable Electrode Arc Welding Processes
  • 3.3.2.1. Gas-Metal Arc Welding
  • 3.3.2.2. Shielded-Metal Arc Welding
  • 3.3.2.3. Flux-Cored Arc Welding
  • 3.3.2.4. Submerged Arc Welding
  • 3.3.2.5. Electrogas Welding
  • 3.3.2.6. Electroslag Welding
  • 3.4. Resistance Welding Processes
  • 3.4.1. Resistance Spot, Resistance Seam, and Projection Welding
  • 3.4.2. Flash, Upset, and Percussion Welding
  • 3.5. High-Intensity Radiant Energy or High-Density Beam Welding Processes
  • 3.5.1. High-Energy-Density (Laser and Electron) Beam Welding Processes
  • 3.5.2. Focused IR and Imaged Arc Welding
  • 3.5.3. Microwave Welding
  • 3.6. Summary
  • 4. NONFUSION WELDING PROCESSES
  • 4.1. General Description of Nonfusion Welding Processes
  • 4.2. Pressure (Nonfusion) Welding Processes
  • 4.2.1. Cold Welding Processes
  • 4.2.2. Hot Pressure Welding
  • 4.2.2.1. Pressure Gas Welding
  • 4.2.2.2. Forge Welding
  • 4.2.3. Roll Welding
  • 4.2.4. Explosion Welding
  • 4.3. Friction Welding Processes
  • 4.3.1. Radial and Orbital Welding
  • 4.3.2. Direct-Drive Versus Inertia-Drive (Friction) Welding
  • 4.3.3. Angular and Linear Reciprocating (Friction) Welding
  • 4.3.4. Ultrasonic (Friction) Welding
  • 4.3.5. Friction Stir Welding
  • 4.3.6. Friction Surfacing
  • 4.4. Diffusion Joining Processes
  • 4.4.1. Diffusion Welding
  • 4.4.1.1. Conventional Diffusion Welding
  • 4.4.1.2. Deformation Diffusion Welding
  • 4.4.1.3. Resistance Diffusion Welding
  • 4.4.1.4. Continuous Seam Diffusion Welding
  • 4.4.2. Diffusion Brazing
  • 4.4.3. Combined Forming and Diffusion Welding
  • 4.5. Solid-state Deposition Welding Processes
  • 4.6. Inspection and Repair of Nonfusion Welds
  • 4.7. Summary.
  • II. THE PHYSICS OF WELDING
  • 5. ENERGY FOR WELDING
  • 5.1. Introduction to the Physics of Welding
  • 5.2. Sources of Energy for Welding
  • 5.3. Source Energy, Transferred Power, Energy Density, and Energy Distribution
  • 5.3.1. Energy Available at a Source (Energy Level or Capacity)
  • 5.3.2. Transferred Power
  • 5.3.3. Source Intensity or Energy Density
  • 5.3.4. Energy Distribution
  • 5.4. Energy Input to a Weld
  • 5.5. Causes of Loss During Energy Transfer From Source to Work
  • 5.6. Transfer Efficiency of Processes
  • 5.7. Effects of Deposited Energy: Good and Bad
  • 5.7.1. Desirable Melting, Fluxing, or Softening
  • 5.7.2. Adverse Effects of Heat in and Around the Weld
  • 5.8. Effects of Energy Density and Distribution
  • 5.9. Summary
  • 6. THE FLOW OF HEAT IN WELDS
  • 6.1. General Description of the Flow of Heat in Welds
  • 6.2. Weld Joint Configurations
  • 6.2.1. Types of Weld Joints
  • 6.2.2. General Weld Design Guidelines
  • 6.2.3. Size of a Weld and Amount of Welding
  • 6.3. The Welding Thermal Cycle
  • 6.4. The Generalized Equation of Heat Flow
  • 6.5. Analysis of Heat Flow During Welding
  • 6.5.1. Rosenthal's Simplified Approach
  • 6.5.2. Modifications to Rosenthal's Solutions
  • 6.5.3. Dimensionless Weld Depth Versus Dimensionless Operating Parameter
  • 6.6. Effect of Welding Parameters on Heat Distribution
  • 6.7. Prediction of Weld Zones and Weld Cooling Rates
  • 6.7.1. Zones in Fusion-Welded Materials
  • 6.7.2. Simplified Equations for Approximating Welding Conditions
  • 6.7.2.1. Peak Temperatures
  • 6.7.2.2. Width of the Heat-Affected Zone
  • 6.7.2.3. Solidification Rate
  • 6.7.2.4. Cooling Rates
  • 6.8. Weld Simulation and Simulators
  • 6.9. Summary
  • 7. THERMALLY INDUCED DISTORTION AND RESIDUAL STRESSES DURING WELDING
  • 7.1. Origin of Thermal Stresses
  • 7.2. Distortion Versus Residual Stresses
  • 7.2.1. Causes of Residual Stresses in Weldments
  • 7.2.1.1. Residual Stresses From Mismatch
  • 7.2.1.2. Residual Stresses From Nonuniform, Nonelastic Strains
  • 7.2.2. Causes of Distortion in Weldments
  • 7.3. Typical Residual Stresses in Weldments
  • 7.4. Effects of Distortion
  • 7.5. Effects of Residual Stresses
  • 7.6. Measurement of Residual Stresses in Weldments
  • 7.6.1. Stress-Relaxation Techniques
  • 7.6.1.1. A Sectioning Technique Using Electric-Resistance Strain Gauges
  • 7.6.1.2. The Rosenthal-Norton Section Technique
  • 7.6.1.3. The Mathar-Soete Hole Drilling Technique
  • 7.6.1.4. The Gunnert Drilling Technique
  • 7.6.2. The X-ray Diffraction Technique
  • 7.7. Residual Stress Reduction and Distortion Control
  • 7.7.1. The Interplay Between Residual Stresses and Distortion
  • 7.7.2. Prevention Versus Remediation
  • 7.7.3. Controlling or Removing Residual Stresses
  • 7.7.4. Controlling or Removing Distortion
  • 7.8. Numerical Methods for Estimating Residual Stresses
  • 7.9. Summary.
  • 8. THE PHYSICS OF WELDING ENERGY OR POWER SOURCES
  • 8.1. Electricity for Welding
  • 8.2. The Physics of an Electric Arc and Arc Welding
  • 8.2.1. The Physics of an Electric Arc
  • 8.2.1.1. The Welding Arc
  • 8.2.1.2. The Arc Plasma
  • 8.2.1.3. Arc Temperature
  • 8.2.1.4. Arc Radiation
  • 8.2.1.5. Arc Electrical Features
  • 8.2.1.6. Effect of Magnetic Fields on Arcs
  • 8.2.2. Volt-Ampere Characteristics for Welding
  • 8.2.2.1. Constant-Current Power Sources
  • 8.2.2.2. Constant-Voltage Power Sources
  • 8.2.2.3. Combined Characteristic Sources
  • 8.3. The Physics of a Plasma
  • 8.4. The Physics of Resistance (or Joule) Heating and Resistance Welding
  • 8.4.1. Joule Heating
  • 8.4.2. The Resistance Welding Cycle
  • 8.4.3. Resistance Welding Power Supplies
  • 8.5. The Physics of Electron Beams
  • 8.5.1. Electron-Beam Generation
  • 8.5.2. Electron-Beam Control
  • 8.5.3. Role of Vacuum in EB Welding
  • 8.5.4. Electron-Beam-Material Interactions
  • 8.6. The Physics of Laser Beams
  • 8.6.1. Laser Light
  • 8.6.2. Laser Generation
  • 8.6.2.1. Nd:YAG Lasers
  • 8.6.2.2. CO2 Lasers
  • 8.6.3. Laser-Beam Control
  • 8.6.4. Laser-Beam-Material Interactions
  • 8.6.5. Benefits of Laser-Beam and Electron-Beam Welding
  • 8.7. The Physics of a Combustion Flame
  • 8.7.1. Fuel Gas Combustion or Heat of Combustion
  • 8.7.2. Flame Temperature
  • 8.7.3. Flame Propagation Rate or Combustion Velocity
  • 8.7.4. Combustion Intensity
  • 8.8. The Physics of Converting Mechanical Work to Heat
  • 8.9. Summary
  • 9. MOLTEN METAL TRANSFER IN CONSUMABLE ELECTRODE ARC WELDING
  • 9.1. Forces Contributing to Molten Metal Transfer in Welding
  • 9.1.1. Gas Pressure Generation at Flux-Coated or Flux-Cored Electrode Tips
  • 9.1.2. Electrostatic Attraction
  • 9.1.3. Gravity
  • 9.1.4. Electromagnetic Pinch Effect
  • 9.1.5. Explosive Evaporation
  • 9.1.6. Electromagnetic Pressure
  • 9.1.7. Plasma Friction
  • 9.1.8. Surface Tension
  • 9.2. Free-Flight Transfer Modes
  • 9.2.1. Globular Transfer
  • 9.2.2. Spray Transfer
  • 9.3. Bridging of Short-circuiting Transfer Modes
  • 9.4. Pulsed-Arc or Pulsed-Current Transfer
  • 9.5. Slag-Protected Transfer
  • 9.6. Variations of Major Transfer Modes
  • 9.7. Effect of Welding Process Parameters and Shielding Gas on Transfer Mode
  • 9.7.1. Effects on Transition Current
  • 9.7.2. Shielding Gas Effects
  • 9.7.3. Process Effects
  • 9.7.4. Operating Mode or Polarity Effects
  • 9.8. Summary
  • 10. WELD POOL CONVECTION, OSCILLATION, AND EVAPORATION
  • 10.1. Origin of Convection
  • 10.1.1. Generalities on Convection in Weld Pools
  • 10.1.2. Buoyancy or Gravity Force
  • 10.1.3. Surface Gradient Force or Marangoni Convection
  • 10.1.4. Electromotive Force or Lorentz Force
  • 10.1.5. Impinging or Friction Force
  • 10.1.6. Modeling Convection and Combined Force Effects
  • 10.2. Effects of Convection
  • 10.2.1. Effect of Convection on Penetration
  • 10.2.2. Effect of Convection on Macrosegregation
  • 10.2.3. Effect of Convection of Porosity
  • 10.3. Enhancing Convection
  • 10.4. Weld Pool Oscillation
  • 10.5. Weld Pool Evaporation and Its Effects
  • 10.6. Summary.
  • III. THE CHEMISTRY OF WELDING
  • 11. MOLTEN METAL AND WELD POOL REACTIONS
  • 11.1. Gas-Metal Reactions
  • 11.1.1. Gas Dissolution and Solubility in Molten Metal
  • 11.1.2. Solid Solution Hardening and Phase Stabilization
  • 11.1.3. Porosity Formation
  • 11.1.4. Embrittlement Reactions
  • 11.1.5. Hydrogen Effects
  • 11.1.5.1. Hydrogen Embrittlement
  • 11.1.5.2. Hydrogen Porosity
  • 11.1.5.3. Hydrogen Cracking
  • 11.2. Molten Metal Shielding
  • 11.2.1. Shielding Gases
  • 11.2.2. Slags
  • 11.2.3. Vacuum
  • 11.2.4. Self-Protection and Self-Fluxing Action
  • 11.3. Slag-Metal Reactions
  • 11.3.1. Deoxidizing/Denitriding (or Killing) Versus Protection
  • 11.3.2. Flux-Protected Welding Processes
  • 11.3.3. Shielding Capacities of Different Processes
  • 11.3.4. Slag Function
  • 11.3.5. Slag-Metal Chemical Reactions
  • 11.3.6. Flux Types
  • 11.3.7. Common Covered- and Cored-Electrode Flux Systems
  • 11.3.7.1. Shielded Metal Arc Welding Electrode Coatings
  • 11.3.7.2. Flux-Cored Arc Weldipg Fluxes
  • 11.3.7.3. Submerged Arc Welding Fluxes
  • 11.3.8. Basicity Index
  • 11.3.9. Thermodynamic Model for Welding Slag- Metal Reactions
  • 11.4. Summary
  • 12. WELD CHEMICAL HETEROGENEITY
  • 12.1. Weld (Pool) Dilution
  • 12.2. Microsegregation and Banding in the Weld Metal
  • 12.3. Unmixed and Partially Mixed Zones
  • 12.4. Impurities in the Weld Metal
  • 12.5. Macrosegregation in Dissimilar Welds
  • 12.6. Summary
  • IV. THE METALLURGY OF WELDING
  • 13. WELD FUSION ZONE SOLIDIFICATION
  • 13.1. Equilibrium Versus Nonequilibrium
  • 13.2. Solidification of a Pure Crystalline Material
  • 13.2.1. Criteria for Equilibrium at TE, and Constant Pressure
  • 13.2.2. Pure Material Growth Modes
  • 13.2.3. Homogeneous Versus Heterogeneous Nucleation
  • 13.2.3.1. Homogeneous Nucleation
  • 13.2.3.2. Super- or Undercooling
  • 13.2.3.3. Effect of Radius of Curvature on Supercooling
  • 13.2.3.4. Heterogeneous Nucleation
  • 13.2.4. Epitaxial and Competitive Growth
  • 13.2.5. Effect of Weld Pool Shape on Structure
  • 13.2.6. Competing Rates of Melting and Solidification
  • 13.2.7. Effect of Nonequilibrium on Pure Material Solidification
  • 13.3. Equilibrium Solidification of an Alloy
  • 13.3.1. Prerequisites for the Solidification of Alloys
  • 13.3.2. Equilibrium Solidification of a Hypothetical Binary Alloy (Case 1)
  • 13.4. Nonequilibrium Solidification of Alloys
  • 13.4.1. Boundary Conditions for Solidification of Alloys
  • 13.4.2. Equilibrium Maintained Throughout the System at all Times: Microscopic Equilibrium (Case 1)
  • 13.4.3. Complete Liquid Mixing/No Diffusion in the Solid (Case 2)
  • 13.4.3.1. Expression for the Composition of Solid at the Advancing Solid-Liquid Interface
  • 13.4.3.2. Calculation of the Average Composition of the Solid for Case 2
  • 13.4.4. No Liquid Mixing/No Diffusion in the Solid (Case 3)
  • 13.4.4.1. Trace of Average Composition in the Solid for Case 3
  • 13.4.4.2. Expression for the Initial Transient in the Composition of the Solid Formed
  • 13.4.4.3. Some Limitations of the Classic Models
  • 13.4.5. Other Effects of Rapid Solidification
  • 13.4.5.1. Nonequilibrium Solute Partitioning
  • 13.4.5.2. Nonequilibrium Phases
  • 13.5. Consequences of Nonequilibrium Solidification
  • 13.5.1. Interdendritic Microsegregation
  • 13.5.2. Solidus Suppression
  • 13.5.3. Substructure Formation
  • 13.5.3.1. Constitutional Supercooling
  • 13.5.3.2. Effect of Cooling Rate on Substructure
  • 13.5.3.3. Interface Stability
  • 13.5.3.4. Nucleation of New Grains Within the Fusion Zone
  • 13.5.3.5. Controlling Substructure
  • 13.5.4. Centerline Segregation
  • 13.6. Fusion Zone Hot Cracking
  • 13.6.1. Mechanism of Hot Cracking
  • 13.6.2. Remediation of Hot Cracking
  • 13.6.2.1. Control of Weld Metal Composition
  • 13.6.2.2. Control of Solidification Structure
  • 13.6.2.3. Use of Favorable Welding Conditions
  • 13.7. Summary.
  • 14. EUTECTIC, PERITECTIC, AND POSTSOLIDIFICATION FUSION ZONE TRANSFORMATIONS
  • 14.1. Eutectic Reactions or Solidification of Two-Phase Alloys
  • 14.1.1. Solidification at the Eutectic Composition
  • 14.1.2. Solidification of Two-Phase Alloys at Noneutectic Compositions
  • 14.1.3. Morphology of Eutectic Phases
  • 14.2. Peritectic Reactions
  • 14.2.1. Equilibrium Conditions (Case 1)
  • 14.2.1.1. Alloys Below the Solubility Limit of the Solid Phase in the Peritectic
  • 14.2.1.2. Alloys Between the Solubility Limit and the Peritectic Composition
  • 14.2.1.3. Alloys Wlth the Perltectlc Composltlon.
  • 14.2.1.4. Alloys Beyond the Peritectic Composition, but Within the L + S Range.
  • 14.2.1.5. Alloys Past the L + S Range of a Peritectic in the Liquid Field
  • 14.2.2. Nonequilibrium Conditions
  • 14.2.2.1. No Diffusion in the Solid/Complete Mixing in the Liquid (Case 2).
  • 14.2.2.2. No Diffusion in the Solid/No Mixing, Only Diffusion in the Liquid (Case 3).
  • 14.3. Transformations in Ferrite + Austenite or Duplex Stainless Steels
  • 14.4. Kinetics of Solid-state Phase Transformations: Nonequilibrium Versus Equilibrium
  • 14.5. Austenite Decomposition Transformations
  • 14.5.1. Equilibrium Decomposition to Ferrite + Pearlite (The Eutectiod Reaction)
  • 14.5.2. Nonequilibrium Decomposition to Other Ferrite Morphologies (Very Slow to Moderately Slow Cooling Rates)
  • 14.5.3. Nonequilibrium Transformation to Bainite (Faster Cooling Rates)
  • 14.5.4. Nonequilibrium Transformation to Martensite (Very Fast Cooling Rates)
  • 14.6. Sigma and Chi Phase Formation
  • 14.7. Grain Boundary Migration
  • 14.8. Summary
  • 15. THE PARTIALLY MELTED ZONE
  • 15.1. Origin and Location of the Partially Melted Zone
  • 15.2. Constitutional Liquation
  • 15.3. Defects Arising in the PMZ
  • 15.3.1. Conventional Hot Cracking and Liquation Cracking in the PMZ
  • 15.3.2. Loss of Ductility in the PMZ
  • 15.3.3. Hydrogen-Induced Cracking in the PMZ
  • 15.4. Remediation of Defects in the PMZ
  • 15.5. Summary.
  • 16. THE WELD HEAT-AFFECTED ZONE
  • 16.1. Heat-Affected Zones in Welds
  • 16.2. The HAZ in Work-Hardened or Cold-Worked Metals and Alloys
  • 16.2.1. The Physical Metallurgy of Cold Work/Recovery/Recrystallization/Grain Growth
  • 16.2.2. Cold-Worked Metals and Alloys in Engineering
  • 16.2.3. Avoiding or Recovering Property Losses in Work-Hardened Metals or Alloys
  • 16.2.4. Development of a Worked Zone in Pressure-Welded Materials
  • 16.3. The HAZ in a Solid-Solution-Strengthened Metal or of an Alloy
  • 16.3.1. The Physical Metallurgy of Solid-Solution Strengthening or Alloying
  • 16.3.2. Major Engineering Alloys Consisting of Single-Phase Solid Solutions
  • 16.3.3. Maintaining Properties in Single-Phase Solid-Solution-Strengthened Alloys
  • 16.4. The HAZ in Precipitation-Hardened or Age-Hardenable Alloys
  • 16.4.1. The Physical Metallurgy of Precipitation- or Age-Hardenable Alloys
  • 16.4.2. Important Precipitation-Hardenable Alloys in Engineering
  • 16.4.3. Avoiding or Recovering Property Losses in Age-Hardenable Alloys
  • 16.5. The HAZ in Transformation-Hardenable Alloys.
  • 16.5.1. The Physical Metallurgy of Transformation-Hardenable Alloys
  • 16.5.2. Some Important Engineering Alloys Exhibiting Transformation Hardening
  • 16.5.3. Welding Behavior of Carbon and Alloys Steels
  • 16.5.3.1. Behavior of Carbon Steels
  • 16.5.3.2. Behavior of Alloy Steels
  • 16.6. The HAZ in Corrosion-Resistant Stainless Steels
  • 16.6.1. The Physical Metallurgy of Stainless Steels
  • 16.6.2. Major Stainless Steels Used in Engineering
  • 16.6.3. Sensitization of Austenitic Stainless Steels by Welding
  • 16.6.4. Welding of Ferritic and Martensitic Stainless Steels
  • 16.7. The HAZ in Dispersion-Strengthened or Reinforced Alloys
  • 16.8. HAZ Defects and Their Remediation
  • 16.8.1. Liquation Cracking
  • 16.8.2. Reheat or Strain-Age Cracking
  • 16.8.3. Quench Cracking and Hydrogen Cold Cracking
  • 16.8.4. Weld Decay, Knife-Line Attack, and Stress Corrosion Cracking
  • 16.8.5. Lamellar Tearing
  • 16.9. Summary
  • 17. WELDABILITY AND WELD TESTING
  • 17.1. Weldability Testing
  • 17.2. Direct Weldability or Actual Welding Tests
  • 17.2.1. Fusion and Partially Melted Zone Hot-Cracking Tests
  • 17.2.1.1. Finger Test
  • 17.2.1.2. Houldcroft and Battelle Hot-Crack Susceptibility Tests
  • 17.2.1.3. Lehigh Restraint Test
  • 17.2.1.4. Variable-Restraint (or Varestraint) Test
  • 17.2.1.5. Murex Hot-Cracking Test
  • 17.2.1.6. Root-Pass Crack Test
  • 17.2.1.7. Keyhole-Slotted-Plate Test
  • 17.2.1.8. Navy Circular-Fillet-Weldability (NCFW) Test
  • 17.2.1.9. Circular-Groove Cracking and Segmented-Groove Tests
  • 17.2.1.10. Circular-Patch Test
  • 17.2.1.11. Restrained-Patch Test
  • 17.1.1.12. Sigmajig Test
  • 17.2.2. Heat-Affected Zone General Cold-Cracking Weldability Tests
  • 17.2.3. Hydrogen Cracking Testing
  • 17.2.3.1. Implant Test
  • 17.2.3.2. RPI Augmented Strain Cracking Test
  • 17.2.3.3. Controlled-Thermal-Severity (CTS) Test
  • 17.2.3.4. Lehigh Slot Weldability Test
  • 17.2.3.5. Wedge Test
  • 17.2.3.6. Tekken Test
  • 17.2.3.7. Gapped-Bead-on-Plate or G-BOP Test
  • 17.2.4. Reheat or Strain-Age Cracking Test
  • 17.2.4.1. Compact Tension Test
  • 17.2.4.2. Vinckier Test
  • 17.2.4.3. Spiral Notch Test
  • 17.2.5. Lamellar Tearing Tests
  • 17.2.5.1. Lehigh Cantilever Lamellar Tearing Test
  • 17.2.5.2. Tensile Lamellar Tearing Test
  • 17.3. Indirect Weldability Tests or Tests of Simulated Welds
  • 17.4. Weld Pool Shape Tests
  • 17.5. Weld Testing
  • 17.5.1. Transverse- and Longitudinal-Weld Tensile Tests
  • 17.5.3. Bend Ductility Tests
  • 17.5.2. All-Weld-Metal Tensile Tests
  • 17.5.4. Impact Tests
  • 17.5.5. Other Mechanical Tests
  • 17.5.6. Corrosion Tests
  • 17.5.6.1. General Corrosion and Its Testing
  • 17.5.6.2. Crevice Corrosion and Its Testing
  • 17.5.6.3. Pitting Corrosion and Its Testing
  • 17.5.6.4. Intergranular Corrosion and Its Testing
  • 17.5.6.5. Stress Corrosion and Its Testing
  • 17.6. Summary.