Cargando…

The finite element method : its basis and fundamentals /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zienkiewicz, O. C.
Otros Autores: Taylor, Robert L. (Robert Leroy), 1934-, Zhu, J. Z.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier Butterworth-Heinemann, 2005.
Edición:6th ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 KNOVEL_ocn190810937
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cn|||||||||
008 080115s2005 ne af ob 001 0 eng d
040 |a KNOVL  |b eng  |e pn  |c KNOVL  |d OCLCQ  |d E7B  |d CEF  |d MERUC  |d UWW  |d COO  |d IDEBK  |d B24X7  |d EBLCP  |d OCLCQ  |d KNOVL  |d ZCU  |d KNOVL  |d OCLCF  |d OCLCQ  |d KNOVL  |d DEBSZ  |d OCLCQ  |d PIFAG  |d OCLCQ  |d U3W  |d BUF  |d DEBBG  |d OCLCQ  |d STF  |d WRM  |d ICG  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d S9I  |d OCLCQ  |d K6U  |d UKBTH  |d EYM  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCQ  |d INARC  |d OCLCQ 
019 |a 441791481  |a 648176897  |a 765134841  |a 961627483  |a 962628727  |a 999649947  |a 1060195263  |a 1097987332  |a 1105925537  |a 1159632880  |a 1194744746 
020 |a 9780080472775  |q (electronic bk.) 
020 |a 008047277X  |q (electronic bk.) 
020 |a 1281016527 
020 |a 9781281016522 
020 |a 9786611016524 
020 |a 661101652X 
020 |z 0750663200 
020 |z 9780750663205 
029 1 |a AU@  |b 000042633423 
029 1 |a AU@  |b 000047156147 
029 1 |a AU@  |b 000050961680 
029 1 |a DEBBG  |b BV044123136 
029 1 |a DEBSZ  |b 430382057 
029 1 |a NZ1  |b 11620887 
029 1 |a NZ1  |b 14540144 
029 1 |a NZ1  |b 15627186 
035 |a (OCoLC)190810937  |z (OCoLC)441791481  |z (OCoLC)648176897  |z (OCoLC)765134841  |z (OCoLC)961627483  |z (OCoLC)962628727  |z (OCoLC)999649947  |z (OCoLC)1060195263  |z (OCoLC)1097987332  |z (OCoLC)1105925537  |z (OCoLC)1159632880  |z (OCoLC)1194744746 
037 |b Knovel Corporation  |n http://www.knovel.com 
050 4 |a TA640.2  |b .Z52 2005eb 
082 0 4 |a 620.001/51825  |2 22 
049 |a UAMI 
100 1 |a Zienkiewicz, O. C. 
245 1 4 |a The finite element method :  |b its basis and fundamentals /  |c O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. 
250 |a 6th ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier Butterworth-Heinemann,  |c 2005. 
300 |a 1 online resource (xiv, 733 pages, 4 unnumbered pages of plates) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
500 |a "In the present edition we have decided not to pursue the course of having three contiguous volumes but rather we treat the whole work as an assembly of three separate works, each one capable of being used without the others ... The two further volumes form again separate books ... The first of these is entitled The Finite Element Method in Solid and Structural Mechanics and the second is a text entitled The Finite Element Method in Fluid Dynamics."--Preface 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Cover -- Title page -- Copyright page -- Table of contents -- Preface -- 1. The standard discrete system and origins of the finite element method -- 1.1 Introduction -- 1.2 The structural element and the structural system -- 1.3 Assembly and analysis of a structure -- 1.4 The boundary conditions -- 1.5 Electrical and fluid networks -- 1.6 The general pattern -- 1.7 The standard discrete system -- 1.8 Transformation of coordinates -- 1.9 Problems -- 2. A direct physical approach to problems in elasticity: plane stress -- 2.1 Introduction -- 2.2 Direct formulation of finite element characteristics -- 2.3 Generalization to the whole region -- internal nodal force concept abandoned -- 2.4 Displacement approach as a minimization of total potential energy -- 2.5 Convergence criteria -- 2.6 Discretization error and convergence rate -- 2.7 Displacement functions with discontinuity between elements -- non-conforming elements and the patch test -- 2.8 Finite element solution process -- 2.9 Numerical examples -- 2.10 Concluding remarks -- 2.11 Problems -- 3. Generalization of the finite element concepts. Galerkin- weighted residual and variational approaches -- 3.1 Introduction -- 3.2 Integral or 'weak' statements equivalent to the differential equations -- 3.3 Approximation to integral formulations: the weighted residual-Galerkin method -- 3.4 Virtual work as the 'weak form' of equilibrium equations for analysis of solids or fluids -- 3.5 Partial discretization -- 3.6 Convergence -- 3.7 What are 'variational principles'? -- 3.8 'Natural' variational principles and their relation to governing differential equations -- 3.9 Establishment of natural variational principles for linear, self-adjoint, differential equations -- 3.10 Maximum, minimum, or a saddle point? -- 3.11 Constrained variational principles. Lagrange multipliers -- 3.12 Constrained variational principles. Penalty function and perturbed lagrangian methods -- 3.13 Least squares approximations -- 3.14 Concluding remarks -- finite difference and boundary methods -- 3.15 Problems -- 4. 'Standard' and 'hierarchical' element shape functions: some general families of C0 continuity -- 4.1 Introduction -- 4.2 Standard and hierarchical concepts -- Part 1. 'Standard' shape functions -- Two-dimensional elements -- One-dimensional elements -- Three-dimensional elements -- Part 2. Hierarchical shape functions -- 4.13 Hierarchic polynomials in one dimension -- 4.14 Two- and three-dimensional, hierarchical elements of the 'rectangle' or 'brick' type -- 4.15 Triangle and tetrahedron family -- 4.16 Improvement of conditioning with hierarchical forms -- 4.17 Global and local finite element approximation -- 4.18 Elimination of internal parameters before assembly -- substructures -- 4.19 Concluding remarks -- 4.20 Problems -- 5. Mapped elements and numerical integration -- 'infinite' and 'singularity elements' -- 5.1 Introduction -- 5.2 Use of 'shape functions' in the establishment of coordinate tran. 
520 8 |a Annotation  |b The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms.<br /><br />. The classic FEM text, written by the subject's leading authors<br />. Enhancements include more worked examples and exercises, plus a companion website with a solutions manual and downloadable algorithms<br />. With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problems<br /><br />Active research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations.<br /><br />Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics.<br /><br />* The classic introduction to the finite element method, by two of the subject's leading authors<br />* Any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in this key text<br />* Enhancements include more worked examples, exercises, plus a companion website with a worked solutions manual for tutors and downloadable algorithms. 
546 |a English. 
590 |a Knovel  |b ACADEMIC - Mechanics & Mechanical Engineering 
650 0 |a Finite element method. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering mathematics  |x Data processing. 
650 6 |a Méthode des éléments finis. 
650 6 |a Mathématiques de l'ingénieur  |x Informatique. 
650 6 |a Mathématiques de l'ingénieur. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Engineering mathematics  |x Data processing.  |2 fast  |0 (OCoLC)fst00910603 
650 7 |a Engineering mathematics.  |2 fast  |0 (OCoLC)fst00910601 
650 7 |a Finite element method.  |2 fast  |0 (OCoLC)fst00924897 
700 1 |a Taylor, Robert L.  |q (Robert Leroy),  |d 1934- 
700 1 |a Zhu, J. Z. 
700 1 |a Zienkiewicz, O. C.  |t Finite element method in solid and structural mechanics. 
700 1 |a Zienkiewicz, O. C.  |t Finite element method in fluid dynamics. 
776 0 8 |i Print version:  |a Zienkiewicz, O.C.  |t Finite element method.  |b 6th ed.  |d Amsterdam ; Boston : Elsevier Butterworth-Heinemann, 2005  |z 0750663200  |w (OCoLC)60592819 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpFEMIBFEA/toc  |z Texto completo 
938 |a Internet Archive  |b INAR  |n finiteelementmet0000zien_q2q0 
938 |a Books 24x7  |b B247  |n bke00037286 
938 |a EBL - Ebook Library  |b EBLB  |n EBL288930 
938 |a ebrary  |b EBRY  |n ebr10169866 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 101652 
994 |a 92  |b IZTAP