Cargando…

Computational neural networks for geophysical data processing /

This book was primarily written for an audience that has heard about neural networks or has had some experience with the algorithms, but would like to gain a deeper understanding of the fundamental material. For those that already have a solid grasp of how to create a neural network application, thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Poulton, Mary M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : Pergamon, 2001.
Edición:1st ed.
Colección:Handbook of geophysical exploration. Seismic exploration ; v. 30.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 KNOVEL_ocn190795132
003 OCoLC
005 20231027140348.0
006 m o d
007 cr |||||||||||
008 080114s2001 ne a ob 001 0 eng d
040 |a WAU  |b eng  |e pn  |c WAU  |d YDXCP  |d KNOVL  |d BTCTA  |d IDEBK  |d OCLCQ  |d KNOVL  |d ZCU  |d KNOVL  |d OCLCF  |d OCLCO  |d KNOVL  |d OCLCQ  |d N$T  |d TEX  |d OKU  |d SINTU  |d OCLCO  |d OCLCQ  |d OCLCO  |d MERUC  |d COO  |d EBLCP  |d OCLCO  |d OCLCQ  |d AU@  |d OCLCQ  |d OL$  |d OCLCQ  |d OCLCO  |d ERD  |d OCLCO  |d OCLCQ 
019 |a 173240203  |a 174039419  |a 179792550  |a 437189358  |a 468748846  |a 519176453  |a 738546608  |a 742284998  |a 815529095  |a 823108332  |a 823829043  |a 823898757  |a 824090042  |a 824137078  |a 1058017164 
020 |a 0080439861  |q (alk. paper) 
020 |a 9780080439860  |q (alk. paper) 
020 |a 9780080529653  |q (electronic) 
020 |a 0080529658  |q (electronic) 
020 |a 1281038091 
020 |a 9781281038098 
029 1 |a AU@  |b 000042742313 
029 1 |a NZ1  |b 12371995 
035 |a (OCoLC)190795132  |z (OCoLC)173240203  |z (OCoLC)174039419  |z (OCoLC)179792550  |z (OCoLC)437189358  |z (OCoLC)468748846  |z (OCoLC)519176453  |z (OCoLC)738546608  |z (OCoLC)742284998  |z (OCoLC)815529095  |z (OCoLC)823108332  |z (OCoLC)823829043  |z (OCoLC)823898757  |z (OCoLC)824090042  |z (OCoLC)824137078  |z (OCoLC)1058017164 
037 |b 00991439 
050 4 |a TN269  |b .C59 2001eb 
072 7 |a TEC  |x 026000  |2 bisacsh 
072 7 |a RBG  |2 bicssc 
072 7 |a QC  |2 lcco 
082 0 4 |a 622/.15/0285632  |2 22 
049 |a UAMI 
245 0 0 |a Computational neural networks for geophysical data processing /  |c edited by Mary M. Poulton. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York :  |b Pergamon,  |c 2001. 
300 |a 1 online resource (xiii, 335 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Seismic exploration,  |x 0950-1401 ;  |v v. 30 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
520 |a This book was primarily written for an audience that has heard about neural networks or has had some experience with the algorithms, but would like to gain a deeper understanding of the fundamental material. For those that already have a solid grasp of how to create a neural network application, this work can provide a wide range of examples of nuances in network design, data set design, testing strategy, and error analysis. Computational, rather than artificial, modifiers are used for neural networks in this book to make a distinction between networks that are implemented in hardware and those that are implemented in software. The term artificial neural network covers any implementation that is inorganic and is the most general term. Computational neural networks are only implemented in software but represent the vast majority of applications. While this book cannot provide a blue print for every conceivable geophysics application, it does outline a basic approach that has been used successfully. 
505 0 |a Front Cover; Computational Neural Networks for Geophysical Data Processing; Copyright Page; Table of Contents; Preface; Contributing Authors; Part I: Introduction to Computational Neural Networks; Chapter 1. A Brief History; Chapter 2. Biological Versus Computational Neural Networks; Chapter 3. Multi-Layer Perceptrons and Back-Propagation Learning; Chapter 4. Design of Training and Testing Sets; Chapter 5. Alternative Architectures and Learning Rules; Chapter 6. Software and Other Resources; Part II: Seismic Data Processing; Chapter 7. Seismic Interpretation and Processing Applications. 
505 8 |a Chapter 8. Rock Mass and Reservoir CharacterizationChapter 9. Identifying Seismic Crew Noise; Chapter 10. Self-Organizing Map (SOM) Network for Tracking Horizons and Classifying Seismic Traces; Chapter 11. Permeability Estimation with an RBF Network and Levenberg-Marquardt Learning; Chapter 12. Caianiello Neural Network Method for Geophysical Inverse Problems; Part III: Non-Seismic Applications; Chapter 13. Non-Seismic A. 
546 |a English. 
590 |a Knovel  |b ACADEMIC - Earth Sciences 
590 |a Knovel  |b ACADEMIC - Oil & Gas Engineering 
650 0 |a Prospecting  |x Geophysical methods  |x Data processing. 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer 
650 6 |a Prospection géophysique  |x Informatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mining.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Prospecting  |x Geophysical methods  |x Data processing.  |2 fast  |0 (OCoLC)fst01079427 
700 1 |a Poulton, Mary M. 
776 0 8 |i Print version:  |t Computational neural networks for geophysical data processing.  |b 1st ed.  |d Amsterdam ; New York : Pergamon, 2001  |z 0080439861  |z 9780080439860  |w (DLC) 2001033815  |w (OCoLC)46992095 
830 0 |a Handbook of geophysical exploration.  |n Section I,  |p Seismic exploration ;  |v v. 30. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpCNNGDP0K/toc  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0007491764 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL312722 
938 |a EBSCOhost  |b EBSC  |n 205613 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 103809 
938 |a YBP Library Services  |b YANK  |n 2636743 
994 |a 92  |b IZTAP