A Web-Based Approach to Measure Skill Mismatches and Skills Profiles for a Developing Country: The Case of Colombia..
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Siglo del Hombre Editores : Siglo del Hombre Editores,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Half-Title Page
- Title Page
- Copyright Page
- Author
- Contents
- List of Figures
- List of Tables
- Acronyms and Abbreviations
- 1. Introduction
- 2. The Labour Market and Skill Mismatches
- 2.1. Introduction
- 2.2. Basic definitions
- 2.2.1. Labour supply
- 2.2.2. Labour demand
- 2.2.3. Informal economy
- 2.2.4. Skills
- 2.3. How the labour market works under perfect competition
- 2.3.1. Labour demand
- 2.3.2. Labour supply
- 2.3.3. Market equilibrium
- 2.4. Market imperfections and segmentation
- 2.4.1. Segmentation
- 2.4.2. Imperfect market information
- 2.5. Conclusion
- 3. The Colombian Context
- 3.1. Introduction
- 3.2. The characteristics of the Colombian labour market
- 3.2.1. Labour supply
- 3.2.2. Labour demand
- 3.3. Skill mismatches in Colombia
- 3.4. An international example of skill mismatch measures
- 3.5. Lack of accurate information to develop well-orientated public policies
- 3.6. Conclusion
- 4. The Information Problem: Big Data as a Solution for Labour Market Analysis
- 4.1. Introduction
- 4.2. A definition of Big Data
- 4.3. Big Data on the labour market
- 4.3.1. Labour supply
- 4.3.2. Labour demand
- 4.4. Potential uses of information from job portals to tackle skill shortages
- 4.4.1. Estimating vacancy levels
- 4.4.2. Identifying skills and other job requirements
- 4.4.3. Recognising new occupations or skills
- 4.4.4. Updating occupation classifications
- 4.5. Big Data limitations and caveats
- 4.5.1. Data quality
- 4.5.2. Job postings are not necessarily real jobs
- 4.5.3. Data representativeness
- 4.5.4. Limited internet penetration rates
- 4.5.5. Data privacy
- 4.6. Big Data in the Colombian context
- 4.7. Conclusion
- 5. Methodology
- 5.1. Introduction
- 5.2. Measurement of the labour demand: Job vacancies
- 5.3. Selecting the most important vacancy websites in the country
- 5.4. Web scraping
- 5.5. The organisation and homogenisation of information
- 5.5.1. Education, experience, localisation, among other job characteristics
- 5.5.2. Wages
- 5.5.3. Company classification
- 5.6. Conclusion
- 6. Extracting More Value from Job Vacancy Information (Methodology Part 2)
- 6.1. Introduction
- 6.2. Identifying skills
- 6.3. Identifying new or specific skills
- 6.4. Classifying vacancies into occupations
- 6.4.1. Manual coding
- 6.4.2. Cleaning
- 6.4.3. Cascot
- 6.4.4. Revisiting manual coding (again)
- 6.4.5. Adaptation of Cascot according to Colombian occupational titles
- 6.4.6. The English version of Cascot
- 6.4.7. Machine learning
- 6.5. Deduplication
- 6.6. Imputing missing values
- 6.6.1. Imputing educational requirements
- 6.6.2. Imputing the wage variable
- 6.7. Vacancy data structure
- 6.8. Conclusion
- 7. Descriptive Analysis of the Vacancy Database
- 7.1. Introduction
- 7.2. Vacancy database composition
- 7.3. Geographical distribution of vacancies and number of jobs