Cargando…

Simple games : desirability relations, trading, pseudoweightings /

Simple games are mathematical structures inspired by voting systems in which a single alternative, such as a bill, is pitted against the status quo. The first in-depth mathematical study of the subject as a coherent subfield of finite combinatorics--one with its own organized body of techniques and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Taylor, Alan D., 1947-
Otros Autores: Zwicker, William S., 1949-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, c1999.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_on1298207785
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 990113s1999 njua ob 001 0 eng
010 |a  2021694896 
040 |a DLC  |b eng  |e pn  |c DLC  |d INARC  |d OCLCF  |d JSTOR  |d CSA  |d EBLCP  |d UKAHL  |d OCLCO  |d YWS  |d OCLCQ  |d OCLCO 
019 |a 1151388201  |a 1227394851 
020 |a 9780691223896  |q ebook 
020 |a 0691223890 
020 |z 0691001200 (cl : alk. paper) 
029 1 |a AU@  |b 000068547570 
035 |a (OCoLC)1298207785  |z (OCoLC)1151388201  |z (OCoLC)1227394851 
037 |a 22573/ctv18xswmz  |b JSTOR 
050 0 0 |a QA269 
072 7 |a MAT  |x 011000  |2 bisacsh 
082 0 0 |a 519.3  |2 21 
049 |a UAMI 
100 1 |a Taylor, Alan D.,  |d 1947- 
245 1 0 |a Simple games :  |b desirability relations, trading, pseudoweightings /  |c Alan D. Taylor and William S. Zwicker. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c c1999. 
300 |a 1 online resource (xiii, 246 p.) 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
504 |a Includes bibliographical references (p. [229]-234) and index. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Acknowledgments --  |t Chapter 1 -- Fundamentals --  |t Chapter 2 -- General Trading: Weighted Games --  |t Chapter 3 -- Pairwise Trading: Linear Games and Winder Games --  |t Chapter 4 -- Cycle Trading: Weakly Acyclic Games and Strongly Acyclic Games --  |t Chapter 5 -- Almost General Trading: Chow Games, Completely Acyclic Games, and Weighted Games --  |t Appendix I: Systems of Linear Inequalities --  |t Appendix II: Separating Hyperplanes --  |t Appendix III: Duality and Transitivity for Binary Relations --  |t References --  |t Index 
520 |a Simple games are mathematical structures inspired by voting systems in which a single alternative, such as a bill, is pitted against the status quo. The first in-depth mathematical study of the subject as a coherent subfield of finite combinatorics--one with its own organized body of techniques and results--this book blends new theorems with some of the striking results from threshold logic, making all of it accessible to game theorists. Introductory material receives a fresh treatment, with an emphasis on Boolean subgames and the Rudin-Keisler order as unifying concepts. Advanced material focuses on the surprisingly wide variety of properties related to the weightedness of a game. A desirability relation orders the individuals or coalitions of a game according to their influence in the corresponding voting system. As Taylor and Zwicker show, acyclicity of such a relation approximates weightedness--the more sensitive the relation, the closer the approximation. A trade is an exchange of players among coalitions, and robustness under such trades is equivalent to weightedness of the game. Robustness under trades that fit some restrictive exchange pattern typically characterizes a wider class of simple games--for example, games for which some particular desirability order is acyclic. Finally, one can often describe these wider classes of simple games by weakening the total additivity of a weighting to obtain what is called a pseudoweighting. In providing such uniform explanations for many of the structural properties of simple games, this book showcases numerous new techniques and results. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Game theory. 
650 0 |a Threshold logic. 
650 2 |a Game Theory 
650 6 |a Théorie des jeux. 
650 6 |a Logique de seuil. 
650 7 |a MATHEMATICS / Game Theory  |2 bisacsh 
650 7 |a Threshold logic  |2 fast 
650 7 |a Game theory  |2 fast 
653 |a B-medium coalition. 
653 |a Boolean function. 
653 |a Boolean subgame. 
653 |a Canadian system. 
653 |a Chow games. 
653 |a Chow parameters. 
653 |a EL-sequence. 
653 |a Gabelman game. 
653 |a Hahn-Banach theorem. 
653 |a Harvard Band. 
653 |a Luxembourg. 
653 |a abstention. 
653 |a adiabatic computing. 
653 |a adjacency of vertices. 
653 |a alternating cycle. 
653 |a antisymmetry. 
653 |a augmented trading matrix. 
653 |a automorphic coalitions. 
653 |a balanced game. 
653 |a basic class. 
653 |a bicameral join. 
653 |a bicameral meet. 
653 |a characteristic function form. 
653 |a classification of linear games. 
653 |a classified coalition. 
653 |a column union. 
653 |a complement symmetric relation. 
653 |a compound simple game. 
653 |a constant-sum games. 
653 |a count and account method. 
653 |a direct market. 
653 |a double appearance. 
653 |a downward closure. 
653 |a dual game. 
653 |a dual property. 
653 |a edge, of a graph. 
653 |a fair division. 
653 |a geometry of simple games. 
653 |a grant of certiorari. 
653 |a high failure. 
653 |a homogeneous games. 
653 |a hypergraph. 
653 |a identification of variables. 
653 |a interval game. 
653 |a k-asuramability. 
653 |a large coalition. 
653 |a linear games. 
653 |a linear graph. 
653 |a losing coalition. 
653 |a major player. 
653 |a master player. 
653 |a monotonicity. 
653 |a multipartition. 
653 |a multiweighting. 
700 1 |a Zwicker, William S.,  |d 1949- 
776 0 8 |i Print version:  |t Simple games  |d Princeton, N.J. : Princeton University Press, c1999.  |z 0691001200 (cl : alk. paper)  |w (DLC) 99012157 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv18zhdsm  |z Texto completo 
938 |a Internet Archive  |b INAR  |n simplegamesdesir0000tayl 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38217716 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6425532 
994 |a 92  |b IZTAP