Cargando…

The material theory of induction /

"The inaugural title in the new, Open Access series BSPS Open, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference. The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Norton, John D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Calgary, Alberta : University of Calgary Press, [2021]
Colección:BSPS open series ; 1
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1277150801
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 211019s2021 abc ob 001 0 eng
040 |a NLC  |b eng  |e rda  |c NLC  |d OCLCF  |d YDX  |d JSTOR  |d EBLCP  |d N$T  |d YDX  |d OCLCO  |d OCLCQ  |d CANEL  |d SFB  |d OCLCO 
015 |a 20210347325  |2 can 
020 |a 9781773852546  |q electronic book 
020 |a 177385254X  |q electronic book 
020 |a 9781773852560  |q electronic book 
020 |a 1773852566  |q electronic book 
020 |a 9781773852553  |q electronic book 
020 |a 1773852558  |q electronic book 
029 1 |a AU@  |b 000070461801 
029 1 |a AU@  |b 000074146403 
035 |a (OCoLC)1277150801 
037 |a 22573/ctv25w6vh3  |b JSTOR 
042 |a lac 
050 4 |a BC91  |b .N67 2021 
055 0 |a BC91  |b .N67 2021 
072 7 |a SCI  |x 075000  |2 bisacsh 
072 7 |a SCI  |x 034000  |2 bisacsh 
072 7 |a PHI  |x 011000  |2 bisacsh 
082 0 4 |a 161  |2 23 
084 |a cci1icc  |2 lacc 
084 |a af101fs  |2 lacc 
049 |a UAMI 
100 1 |a Norton, John D.,  |e author. 
245 1 4 |a The material theory of induction /  |c John D. Norton. 
264 1 |a Calgary, Alberta :  |b University of Calgary Press,  |c [2021] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a BSPS open series ;  |v 1 
504 |a Includes bibliographical references and index. 
520 |a "The inaugural title in the new, Open Access series BSPS Open, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference. The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of inductive support and why it is that they are so. The traditional approach is modeled on that taken in accounts of deductive inference. It seeks universally applicable schemas or rules or a single formal device, such as the probability calculus. After millennia of halting efforts, none of these approaches has been unequivocally successful and debates between approaches persist. The Material Theory of Induction identifies the source of these enduring problems in the assumption taken at the outset: that inductive inference can be accommodated by a single formal account with universal applicability. Instead, it argues that that there is no single, universally applicable formal account. Rather, each domain has an inductive logic native to it. Which that is, and its extent, is determined by the facts prevailing in that domain. Paying close attention to how inductive inference is conducted in science and copiously illustrated with real-world examples, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference."--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on January 21, 2022). 
505 0 |a Front Matter(pp. i-iv) -- Preface(pp. v-viii) -- Table of Contents(pp. ix-xii) -- Prolog(pp. 1-18) -- 1 The Material Theory of Induction Stated and Illustrated(pp. 19-54) -- 2 What Powers Inductive Inference?(pp. 55-88) -- 3 Replicability of Experiment(pp. 89-118) -- 4 Analogy(pp. 119-152) -- 5 Epistemic Virtues and Epistemic Values: A Skeptical Critique(pp. 153-172) -- 6 Simplicity as a Surrogate(pp. 173-222) -- 7 Simplicity in Model Selection(pp. 223-246) -- 8 Inference to the Best Explanation: The General Account(pp. 247-272) -- 9 Inference to the Best Explanation: Examples(pp. 273-334) -- 9 Inference to the Best Explanation: Examples(pp. 273-334) -- 11 Circularity in the Scoring Rule Vindication of Probabilities(pp. 387-434) -- 12 No Place to Stand: The Incompleteness of All Calculi of Inductive Inference(pp. 435-468) -- 12 No Place to Stand: The Incompleteness of All Calculi of Inductive Inference(pp. 435-468) -- 14 Uncountable Problems(pp. 519-572) -- 15 Indeterministic Physical Systems(pp. 573-612) -- 16 A Quantum Inductive Logic(pp. 613-652) -- Epilog(pp. 653-656) -- Index(pp. 657-668) -- Back Matter(pp. 669-669). 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Induction (Logic) 
650 0 |a Inference. 
650 0 |a Logic. 
650 6 |a Induction (Logique) 
650 6 |a Inférence (Logique) 
650 7 |a SCIENCE / Philosophy & Social Aspects  |2 bisacsh 
650 7 |a Induction (Logic)  |2 fast 
650 7 |a Inference  |2 fast 
650 7 |a Logic  |2 fast 
776 0 8 |i Print version:  |a Norton, John D.  |t Material theory of induction.  |d Calgary, Alberta : University of Calgary Press, 2021  |z 1773852531  |z 9781773852539  |w (OCoLC)1258217898 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv25wxcb5  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 18178331 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6828379 
938 |a YBP Library Services  |b YANK  |n 302645642 
938 |a EBSCOhost  |b EBSC  |n 3124263 
994 |a 92  |b IZTAP