The Mathematics of Egypt, Mesopotamia, China, India, and Islam A Sourcebook.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Permissions
- Introduction
- ch. 1. Egyptian mathematics / Annette Imhausen
- Preliminary remarks
- 1. Introduction
- a. Invention of writing and number systems
- b. Arithmetic
- c. Metrology
- 2. Hieratic mathematical texts
- a. Table texts
- b. Problem texts
- 3. Mathematics in administrative texts
- a. Middle Kingdom texts : the Reisner papyri
- b. New Kingdom texts : Ostraca from Deir el Medina
- 4. Mathematics in the Graeco-Roman period
- a. Context
- b. Table texts
- c. Problem texts
- 5. Appendices
- a. Glossary of Egyptian terms
- b. Sources
- c. References
- Ch. 2. Mesopotamian mathematics / Eleanor Robson
- 1. Introduction
- a. Mesopotamian mathematics through Western eyes
- b. Mathematics and scribal culture in ancient Iraq
- c. From tablet to translation
- d. Explananda
- 2. The long third millennium, c. 3200-2000 BCE
- a. Uruk in the late fourth millennium
- b. Shuruppag in the mid-third millennium
- c. Nippur and Girsu in the twenty-fourth century BCE
- d. Umma and Girsu in the twenty-first century BCE
- 3. The old Babylonian period, c. 2000-1600 BCE
- a. Arithmetical and metrological tables
- b. Mathematical problems
- c. Rough work and reference lists
- 4. Later Mesopotamia, c. 1400-150 BCE
- 5. Appendices
- a. Sources
- b. References
- Ch. 3. Chinese mathematics / Joseph W. Dauben
- Preliminary remarks
- 1. China : the historical and social context
- 2. Methods and procedures : counting rods, the "out-in" principle
- 3. Recent archaeological discoveries : the earliest yet-known bamboo text
- 4. Mathematics and astronomy : the Zhou bi suan jing and right triangles (The Gou-gu or "Pythagorean" theorem)
- 5. The Chinese "Euclid", Liu Hui
- a. The Nine Chapters
- b. The Sea Island Mathematical Classic
- 6. The "Ten Classics" of ancient Chinese mathematics
- a. Numbers and arithmetic : the Mathematical Classic of Master Sun
- b. The Mathematical Classic of Zhang Qiujian
- 7. Outstanding achievements of the Song and Yuan dynasties (960-1368 CE)
- a. Qin Jiushao
- b. Li Zhi (Li Ye)
- c. Yang Hui
- d. Zhu Shijie
- 8. Matteo Ricci and Xu Guangxi, "prefaces" to the first Chinese edition of Euclid's Elements (1607)
- 9. Conclusion
- 10. Appendices
- a. Sources
- b. Bibliographical guides
- c. References
- Ch. 4. Mathematics in India / Kim Plofker
- 1. Introduction : origins of Indian mathematics
- 2. Mathematical texts in ancient India
- a. The Vedas
- b. The Śulbasūtras
- c. Mathematics in other ancient texts
- d. Number systems and numerals
- 3. Evolution of mathematics in medieval India
- a. Mathematics chapters in Siddhānta texts
- b. Transmission of mathematical ideas to the Islamic world
- c. Textbooks on mathematics as a separate subject
- d. The audience for mathematics education
- e. Specialized mathematics : astronomical and cosmological problems
- 4. The Kerala school
- a. Mādhava, his work, and his school
- b. Infinite series and the role of demonstrations
- c. Other mathematical interests in the Kerala school
- 5. Continuity and transition in the second millennium
- a. The ongoing development of Sanskrit mathematics
- b. Scientific exchanges at the courts of Delhi and Jaipur
- c. Assimilation of ideas from Islam ; mathematical table texts
- 6. Encounters with modern Western mathematics
- a. Early exchanges with European mathematics
- b. European versus "native" mathematics education in British India
- c. Assimilation into modern global mathematics
- 7. Appendices
- a. Sources
- b. References
- Ch. 5. Mathematics in medieval Islam / J. Lennart Berggren
- 1. Introduction
- 2. Appropriation of the ancient heritage
- 3. Arithmetic
- 4. Algebra
- 5. Number theory
- 6. Geometry
- a. Theoretical geometry
- b. Practical geometry
- 7. Trigonometry
- 8. Combinatorics
- 9. On mathematics
- 10. Appendices
- a. Sources
- b. References
- Contributors
- Index.