Cargando…

Mathematics of wave propagation /

Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Davis, Julian L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, NJ : Princeton University Press, 2000.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1231563353
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 210115s2000 njua ob 001 0 eng d
010 |a  2021694870 
040 |a JSTOR  |b eng  |e rda  |e pn  |c JSTOR  |d OCLCO  |d EBLCP  |d OCLCO  |d UKAHL  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d DLC  |d FAU  |d OCLCO  |d LUU  |d YWS  |d OCLCQ  |d INARC 
015 |a GBA2-07979 
019 |a 1227392708  |a 1392382974 
020 |a 9780691223377  |q (electronic bk.) 
020 |a 0691223378  |q (electronic bk.) 
020 |z 0691026432 
020 |z 9780691026435 
029 1 |a AU@  |b 000068547967 
035 |a (OCoLC)1231563353  |z (OCoLC)1227392708  |z (OCoLC)1392382974 
037 |a 22573/ctv1826hdk  |b JSTOR 
037 |a 9453275  |b IEEE 
050 4 |a QA927  |b .D32 2000eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
082 0 4 |a 530.12/4  |2 22 
084 |a SK 560  |2 rvk 
084 |a UH 3000  |2 rvk 
084 |a PHY 013f  |2 stub 
049 |a UAMI 
100 1 |a Davis, Julian L. 
245 1 0 |a Mathematics of wave propagation /  |c Julian L. Davis. 
264 1 |a Princeton, NJ :  |b Princeton University Press,  |c 2000. 
300 |a 1 online resource (xv, 395 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 389-390) and index. 
505 0 0 |g Chapter 1  |t Physics of Propagating Waves  |g 3 --  |t Discrete Wave-Propagating Systems  |g 3 --  |t Approximation of Stress Wave Propagation in a Bar by a Finite System of Mass-Spring Models  |g 4 --  |t Limiting Form of a Continuous Bar  |g 5 --  |t Wave Equation for a Bar  |g 5 --  |t Transverse Oscillations of a String  |g 9 --  |t Speed of a Transverse Wave in a Siting  |g 10 --  |t Traveling Waves in General  |g 11 --  |t Sound Wave Propagation in a Tube  |g 16 --  |t Superposition Principle  |g 19 --  |t Sinusoidal Waves  |g 19 --  |t Interference Phenomena  |g 21 --  |t Reflection of Light Waves  |g 25 --  |t Reflection of Waves in a String  |g 27 --  |t Sound Waves  |g 29 --  |t Doppler Effect  |g 33 --  |t Dispersion and Group Velocity  |g 36 --  |g Chapter 2  |t Partial Differential Equations of Wave Propagation  |g 41 --  |t Types of Partial Differential Equations  |g 41 --  |t Geometric Nature of the PDEs of Wave Phenomena  |g 42 --  |t Directional Derivatives  |g 42 --  |t Cauchy Initial Value Problem  |g 44 --  |t Parametric Representation  |g 49 --  |t Wave Equation Equivalent to Two First-Order PDEs  |g 51 --  |t Characteristic Equations for First-Order PDEs  |g 55 --  |t General Treatment of Linear PDEs by Characteristic Theory  |g 57 --  |t Another Method of Characteristics for Second-Order PDEs  |g 61 --  |t Geometric Interpretation of Quasilinear PDEs  |g 63 --  |t Integral Surfaces  |g 65 --  |t Nonlinear Case  |g 67 --  |t Canonical Form of a Second-Order PDE  |g 70 --  |t Riemann's Method of Integration  |g 73 --  |g Chapter 3  |t Wave Equation  |g 85 --  |g Part I  |t One-Dimensional Wave Equation  |g 85 --  |t Factorization of the Wave Equation and Characteristic Curves  |g 85 --  |t Vibrating String as a Combined IV and B V Problem  |g 90 --  |t D'Alembert's Solution to the IV Problem  |g 97 --  |t Domain of Dependence and Range of Influence  |g 101 --  |t Cauchy IV Problem Revisited  |g 102 --  |t Solution of Wave Propagation Problems by Laplace Transforms  |g 105 --  |t Laplace Transforms  |g 108 --  |t Applications to the Wave Equation  |g 111 --  |t Nonhomogeneous Wave Equation  |g 116 --  |t Wave Propagation through Media with Different Velocities  |g 120 --  |t Electrical Transmission Line  |g 122 --  |g Part II  |t Wave Equation in two and Three Dimensions  |g 125 --  |t Two-Dimensional Wave Equation  |g 125 --  |t Reduced Wave Equation in Two Dimensions  |g 126 --  |t Eigenvalues Must Be Negative  |g 127 --  |t Rectangular Membrane  |g 127 --  |t Circular Membrane  |g 131 --  |t Three-Dimensional Wave Equation  |g 135 --  |g Chapter 4  |t Wave Propagation in Fluids  |g 145 --  |g Part I  |t Inviscid Fluids  |g 145 --  |t Lagrangian Representation of One-Dimensional Compressible Gas Flow  |g 146 --  |t Eulerian Representation of a One-Dimensional Gas  |g 149 --  |t Solution by the Method of Characteristics: One-Dimensional Compressible Gas  |g 151 --  |t Two-Dimensional Steady Flow  |g 157 --  |t Bernoulli's Law  |g 159 --  |t Method of Characteristics Applied to Two-Dimensional Steady Flow  |g 161 --  |t Supersonic Velocity Potential  |g 163 --  |t Hodograph Transformation  |g 163 --  |t Shock Wave Phenomena  |g 169 --  |g Part II  |t Viscous Fluids  |g 183 --  |t Elementary Discussion of Viscosity  |g 183 --  |t Conservation Laws  |g 185 --  |t Boundary Conditions and Boundary Layer  |g 190 --  |t Energ Dissipation in a Viscous Fluid  |g 191 --  |t Wave Propagation in a Viscous Fluid  |g 193 --  |t Oscillating Body of Arbitrary Shape  |g 196 --  |t Similarity Considerations and Dimensionless Parameters; Reynolds'Law  |g 197 --  |t Poiseuille Flow  |g 199 --  |t Stokes'Flow  |g 201 --  |t Oseen Approximation  |g 208 --  |g Chapter 5  |t Stress Waves in Elastic Solids  |g 213 --  |t Fundamentals of Elasticity  |g 214 --  |t Equations of Motion for the Stress  |g 223 --  |t Navier Equations of Motion for the Displacement  |g 224 --  |t Propagation of Plane Elastic Waves  |g 227 --  |t General Decomposition of Elastic Waves  |g 228 --  |t Characteristic Surfaces for Planar Waves  |g 229 --  |t Time-Harmonic Solutions and Reduced Wave Equations  |g 230 --  |t Spherically Symmetric Waves  |g 232 --  |t Longitudinal Waves in a Bar  |g 234 --  |t Curvilinear Orthogonal Coordinates  |g 237 --  |t Navier Equations in Cylindrical Coordinates  |g 239 --  |t Radially Symmetric Waves  |g 240 --  |t Waves Propagated Over the Surface of an Elastic Body  |g 243 --  |g Chapter 6  |t Stress Waves in Viscoelastic Solids  |g 250 --  |t Internal Ftiction  |g 251 --  |t Discrete Viscoelastic Models  |g 252 --  |t Continuous Marwell Model  |g 260 --  |t Continuous Voigt Model  |g 263 --  |t Three-Dimensional VE Constitutive Equations  |g 264 --  |t Equations of Motion for a VE Material  |g 265 --  |t One-Dimensional Wave Propagation in VE Media  |g 266 --  |t Radially Symmetric Waves for a VE Bar  |g 270 --  |t ElectromechanicalAnalogy  |g 271 --  |g Chapter 7  |t Wave Propagation in Thermoelastic Media  |g 282 --  |t Duhamel-Neumann Law  |g 282 --  |t Equations of Motion  |g 285 --  |t Plane Harmonic Waves  |g 287 --  |t Three-Dimensional Thermal Waves; Generalized Navier Equation  |g 293 --  |g Chapter 8  |t Water Waves  |g 297 --  |t Irrotational, Incompressible, Inviscid Flow; Velocity Potential and Equipotential Surfaces  |g 297 --  |t Euler's Equations  |g 299 --  |t Two-Dimensional Fluid Flow  |g 300 --  |t Complec Variable Treatment  |g 302 --  |t Vortex Motion  |g 309 --  |t Small-Amplitude Gravity Waves  |g 311 --  |t Water Waves in a Straight Canal  |g 311 --  |t Kinematics of the Free Surface  |g 316 --  |t Vertical Acceleration  |g 317 --  |t Standing Waves  |g 319 --  |t Two-Dimensional Waves of Finite Depth  |g 321 --  |t Boundary Conditions  |g 322 --  |t Formulation of a Typical Surface Wave Problem  |g 324 --  |t Example of Instability  |g 325 --  |t Approximation Aeories  |g 327 --  |t Tidal Waves  |g 337 --  |g Chapter 9  |t Variational Methods in Wave Propagation  |g 344 --  |t Introduction; Fermat's PKnciple  |g 344 --  |t Calculus of Variations; Euler's Equation  |g 345 --  |t Configuration Space  |g 349 --  |t Cnetic and Potential Eneigies  |g 350 --  |t Hamilton's Variational Principle  |g 350 --  |t PKnciple of Virtual Work  |g 352 --  |t Transformation to Generalized Coordinates  |g 354 --  |t Rayleigh's Dissipation Function  |g 357 --  |t Hamilton's Equations of Motion  |g 359 --  |t Cyclic Coordinates  |g 362 --  |t Hamilton-Jacobi Theory  |g 364 --  |t Extension of W to 2 n Degrees of Freedom  |g 370 --  |t H-J Aeory and Wave P[similar]vpagation  |g 372 --  |t Quantum Mechanics  |g 376 --  |t An Analog between Geometric Optics and Classical Mechanics  |g 377 --  |t Asymptotic Theory of Wave Propagation  |g 380 --  |g Appendix  |t Principle of Least Action  |g 384. 
588 0 |a Print version record. 
520 |a Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
600 1 7 |a Welle, ...  |2 gnd 
650 0 |a Wave-motion, Theory of. 
650 6 |a Théorie du mouvement ondulatoire. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Wave-motion, Theory of.  |2 fast  |0 (OCoLC)fst01172888 
650 7 |a Mathematische Physik  |2 gnd 
650 7 |a Wellenausbreitung  |2 gnd 
650 7 |a Welle  |2 gnd 
650 7 |a WAVES.  |2 nasat 
650 7 |a WAVE PROPAGATION.  |2 nasat 
650 7 |a DIFFERENTIAL EQUATIONS.  |2 nasat 
650 7 |a WAVE EQUATIONS.  |2 nasat 
650 7 |a VISCOUS FLUIDS.  |2 nasat 
650 0 7 |a Welle.  |2 swd 
653 |a Acoustic impedance. 
653 |a Adiabatic condition. 
653 |a Adjoint operators. 
653 |a Bessel's equation. 
653 |a Boundary layer. 
653 |a Brachistochrome problem. 
653 |a Bulk modulus. 
653 |a Canonical transformations. 
653 |a Caustic or focal curves. 
653 |a Characteristic coordinates. 
653 |a Characteristic line element. 
653 |a Characteristics, method of. 
653 |a Critical sound speed. 
653 |a Cyclic coordinates. 
653 |a Deformation. 
653 |a Direction field. 
653 |a Doppler effect. 
653 |a Eigenfunctions. 
653 |a Eigenvalues. 
653 |a Epicycloid. 
653 |a Fermat's principle. 
653 |a Finite bar. 
653 |a Friction, internal. 
653 |a Generalized force. 
653 |a Generalized velocity. 
653 |a Hamilton-Jacoby theory. 
653 |a Hamiltonian. 
653 |a Ideal or perfect gas. 
653 |a Integral surfaces. 
653 |a Isothermal condition. 
653 |a Jacobian. 
653 |a Kinetic energy. 
653 |a Lagrangian function. 
653 |a Lame constants. 
653 |a Laminar flow. 
653 |a Memory function. 
653 |a Minimizing curve. 
653 |a Monge axis. 
653 |a Monge cone. 
653 |a Navier equations. 
653 |a Oseen approximation. 
653 |a Physics of propagating waves. 
653 |a Plane elastic waves. 
653 |a Poiseuille flow. 
653 |a Progressing wave. 
653 |a Quantum mechanics. 
653 |a Radially symmetric waves. 
653 |a Regressing wave. 
653 |a Reynold's law. 
653 |a Self-adjoint operator. 
653 |a Sinusoidal waves. 
776 0 8 |i Print version:  |a Davis, Julian L.  |t Mathematics of wave propagation.  |d Princeton, NJ : Princeton University Press, 2000  |z 0691026432  |w (DLC) 99044938  |w (OCoLC)42290530 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv182jt69  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38216096 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6425528 
938 |a Internet Archive  |b INAR  |n mathematicsofwav0000davi 
994 |a 92  |b IZTAP