Cargando…

Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34 /

This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Knapp, Anthony W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 1988.
Colección:Mathematical Notes Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1227390878
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 201219s1988 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d JSTOR  |d OCLCO  |d JSTOR  |d OCLCF  |d HTM  |d UIU  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9780691223803  |q (electronic bk.) 
020 |a 0691223807  |q (electronic bk.) 
029 1 |a AU@  |b 000068570835 
035 |a (OCoLC)1227390878 
037 |a 22573/ctv18xt1wg  |b JSTOR 
050 4 |a QA387  |b .K57 1988eb 
082 0 4 |a 512/.55  |2 23 
049 |a UAMI 
100 1 |a Knapp, Anthony W. 
245 1 0 |a Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34 /  |c Anthony W. Knapp 
260 |a Princeton :  |b Princeton University Press,  |c 1988. 
300 |a 1 online resource (526 page) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematical Notes Ser. ;  |v v. 108 
588 0 |a Print version record. 
520 |a This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational techniques that are so important in handling Lie groups. The book is based on a one-semester course given at the State University of New York, Stony Brook in fall, 1986 to an audience having little or no background in Lie groups but interested in seeing connections among algebra, geometry, and Lie theory. These notes develop what is needed beyond a first graduate course in algebra in order to appreciate cohomological induction and to see its first consequences. Along the way one is able to study homological algebra with a significant application in mind; consequently one sees just what results in that subject are fundamental and what results are minor. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Lie groups. 
650 0 |a Lie algebras. 
650 0 |a Homology theory. 
650 6 |a Groupes de Lie. 
650 6 |a Algèbres de Lie. 
650 6 |a Homologie. 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
776 0 8 |i Print version:  |a Knapp, Anthony W.  |t Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.  |d Princeton : Princeton University Press, ©1988  |z 9780691084985 
830 0 |a Mathematical Notes Ser. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv18zhdw5  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6425523 
994 |a 92  |b IZTAP