|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
JSTOR_on1226522030 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
201211s2005 njua ob 001 0 eng d |
040 |
|
|
|a JSTOR
|b eng
|e rda
|e pn
|c JSTOR
|d OCLCO
|d UKAHL
|d HTM
|d OCLCQ
|d DLC
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d YWS
|d OCLCO
|
019 |
|
|
|a 1223027047
|
020 |
|
|
|a 9780691222462
|q (electronic bk.)
|
020 |
|
|
|a 0691222460
|q (electronic bk.)
|
020 |
|
|
|z 0691118892
|
020 |
|
|
|z 9780691118895
|
035 |
|
|
|a (OCoLC)1226522030
|z (OCoLC)1223027047
|
037 |
|
|
|a 22573/ctv17czcqh
|b JSTOR
|
050 |
|
4 |
|a QA649
|b .W45 2005eb
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 018000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/73
|2 22
|
084 |
|
|
|a 31.50
|2 bcl
|
084 |
|
|
|a SK 180
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Weinberger, Shmuel.
|
245 |
1 |
0 |
|a Computers, rigidity, and moduli :
|b the large-scale fractal geometry of Riemannian moduli space /
|c Shmuel Weinberger.
|
264 |
|
1 |
|a Princeton, N.J. :
|b Princeton University Press,
|c ©2005.
|
300 |
|
|
|a 1 online resource (x, 174 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a M.B. Porter lectures
|
500 |
|
|
|a "M.B. Porter lectures"--Page ii
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Ch. 1.
|t Group theory --
|g Ch. 2.
|t Designer homology spheres --
|g Ch. 3.
|t The roles of entropy --
|g Ch. 4.
|t The large-scale fractal geometry of Riemannian moduli space.
|
520 |
1 |
|
|a "This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow."--Jacket
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
650 |
|
0 |
|a Riemannian manifolds.
|
650 |
|
0 |
|a Computational complexity.
|
650 |
|
0 |
|a Moduli theory.
|
650 |
|
0 |
|a Fractals.
|
650 |
|
6 |
|a Variétés de Riemann.
|
650 |
|
6 |
|a Complexité de calcul (Informatique)
|
650 |
|
6 |
|a Théorie des modules.
|
650 |
|
6 |
|a Fractales.
|
650 |
|
7 |
|a fractals.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Computational complexity
|2 fast
|
650 |
|
7 |
|a Fractals
|2 fast
|
650 |
|
7 |
|a Moduli theory
|2 fast
|
650 |
|
7 |
|a Riemannian manifolds
|2 fast
|
650 |
1 |
7 |
|a Riemann-vlakken.
|2 gtt
|
650 |
1 |
7 |
|a Moduli spaces.
|2 gtt
|
650 |
1 |
7 |
|a Fractals.
|2 gtt
|
653 |
|
|
|a Ackermann hierarchy.
|
653 |
|
|
|a Ancel-Cannon theorem.
|
653 |
|
|
|a Borel conjecture.
|
653 |
|
|
|a Clozel's theorem.
|
653 |
|
|
|a Coxeter group.
|
653 |
|
|
|a Davis construction.
|
653 |
|
|
|a Dehn function.
|
653 |
|
|
|a Dirichlet principle.
|
653 |
|
|
|a Einstein preface.
|
653 |
|
|
|a Euler characteristic.
|
653 |
|
|
|a Euler-Lagrange equation.
|
653 |
|
|
|a Gromoll-Meyer theorem.
|
653 |
|
|
|a Gromov-Hausdorff convergence.
|
653 |
|
|
|a Hadamard's theorem.
|
653 |
|
|
|a JSJ decomposition.
|
653 |
|
|
|a Kervaire's theorem.
|
653 |
|
|
|a Kolmogrov complexity.
|
653 |
|
|
|a Kurosh subgroup theorem.
|
653 |
|
|
|a L-group.
|
653 |
|
|
|a Markov property.
|
653 |
|
|
|a Markov's theorem.
|
653 |
|
|
|a Mikhailova construction.
|
653 |
|
|
|a Mostow rigidity.
|
653 |
|
|
|a Nash's theorem.
|
653 |
|
|
|a Turing hierarchy.
|
653 |
|
|
|a Turing machine.
|
653 |
|
|
|a acyclic complex.
|
653 |
|
|
|a assembly map.
|
653 |
|
|
|a billiard trajectories.
|
653 |
|
|
|a bounded cohomology.
|
653 |
|
|
|a computability.
|
653 |
|
|
|a computable function.
|
653 |
|
|
|a computable set.
|
653 |
|
|
|a concordance.
|
653 |
|
|
|a convexity radius.
|
653 |
|
|
|a entropy.
|
653 |
|
|
|a filling function.
|
653 |
|
|
|a free loopspace.
|
653 |
|
|
|a gamma group.
|
653 |
|
|
|a geodesic.
|
653 |
|
|
|a gradient flow.
|
653 |
|
|
|a harmonic map.
|
653 |
|
|
|a homology sphere.
|
653 |
|
|
|a hypersurface.
|
653 |
|
|
|a injectivity radius.
|
653 |
|
|
|a intersection homology.
|
653 |
|
|
|a irony.
|
653 |
|
|
|a orbifold fundamental group.
|
653 |
|
|
|a orbifold.
|
653 |
|
|
|a perfect group.
|
653 |
|
|
|a quantum gravity computer.
|
653 |
|
|
|a scientific theories.
|
653 |
|
|
|a secondary invariants.
|
653 |
|
|
|a signature.
|
776 |
0 |
8 |
|i Print version:
|a Weinberger, Shmuel.
|t Computers, rigidity, and moduli.
|d Princeton, N.J. : Princeton University Press, ©2005
|z 0691118892
|w (DLC) 2004044344
|w (OCoLC)54372142
|
830 |
|
0 |
|a M.B. Porter lectures.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctv17db3tj
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37841362
|
994 |
|
|
|a 92
|b IZTAP
|