Cargando…

Hybrid Feedback Control /

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sanfelice, Ricardo G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2021]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title
  • Copyright
  • Dedicaiton
  • Contents
  • Preface
  • List of Symbols
  • 1 Introduction
  • 1.1 Overview
  • 1.2 Why Hybrid Control?
  • 1.2.1 Hybrid Models Capture Rich Behavior
  • 1.2.2 Continuous-Time Systems not Stabilizable via Continuous State-Feedback Can Be Stabilized via Hybrid Control
  • 1.2.3 Almost Global Asymptotic Stability Turns Global
  • 1.2.4 Nonrobust Stability Becomes Robust
  • 1.2.5 Controlled Intersample Behavior and Aperiodic Sampling
  • 1.2.6 Hybrid Feedback Control Improves Performance
  • 1.3 Exercises
  • 1.4 Notes
  • 2 Modeling Framework
  • 2.1 Overview
  • 2.2 On Truly Hybrid Models
  • 2.3 Modeling
  • 2.3.1 From Plants and Controllers to Closed-Loop Systems
  • 2.3.2 Hybrid Basic Conditions
  • 2.3.3 Solution Concept
  • 2.3.4 Existence of Solutions to Closed-Loop Systems
  • 2.3.5 Hybrid System Models with Disturbances
  • 2.4 Numerical Simulation
  • 2.5 Exercises
  • 2.6 Notes
  • 3 Notions and Analysis Tools
  • 3.1 Overview
  • 3.2 Notions
  • 3.2.1 Asymptotic Stability
  • 3.2.2 Invariance
  • 3.2.3 Robustness to Disturbances
  • 3.3 Analysis Tools
  • 3.3.1 Hybrid Lyapunov Theorem
  • 3.3.2 Hybrid Invariance Principle
  • 3.3.3 Robustness from KL Pre-Asymptotic Stability
  • 3.4 Exercises
  • 3.5 Notes
  • 4 Uniting Control
  • 4.1 Overview
  • 4.2 Hybrid Controller
  • 4.3 Closed-Loop System
  • 4.4 Design
  • 4.5 Exercises
  • 4.6 Notes
  • 5 Event-Triggered Control
  • 5.1 Overview
  • 5.2 Hybrid Controller
  • 5.3 Closed-Loop System
  • 5.4 Design
  • 5.4.1 Completeness of Maximal Solutions
  • 5.4.2 Minimum Time in Between Events
  • 5.4.3 Pre-Asymptotic Stability
  • 5.5 Exercises
  • 5.6 Notes
  • 6 Throw-Catch Control
  • 6.1 Overview
  • 6.2 Hybrid Controller
  • 6.3 Closed-Loop System
  • 6.4 Design
  • 6.4.1 Design of Local Stabilizer k0
  • 6.4.2 Design of Local Stabilizers ki, s and Sets Ai, s
  • 6.4.3 Design of Open-Loop Control Laws
  • 6.4.4 Design of Bootstrap Controller and Sets
  • 6.5 Exercises
  • 6.6 Notes
  • 7 Synergistic Control
  • 7.1 Overview
  • 7.2 Hybrid Controller
  • 7.3 Closed-Loop System
  • 7.4 Design
  • 7.4.1 The General Case
  • 7.4.2 The Control Affine Case
  • 7.5 Exercises
  • 7.6 Notes
  • 8 Supervisory Control
  • 8.1 Overview
  • 8.2 Hybrid Controller
  • 8.3 Closed-Loop System
  • 8.4 Design
  • 8.5 Exercises
  • 8.6 Notes
  • 9 Passivity-Based Control
  • 9.1 Overview
  • 9.2 Passivity
  • 9.3 Pre-Asymptotic Stability from Passivity
  • 9.4 Design
  • 9.5 Exercises
  • 9.6 Notes
  • 10 Feedback Design via Control Lyapunov Functions
  • 10.1 Overview
  • 10.2 Control Lyapunov Functions
  • 10.3 Design
  • 10.3.1 Nominal Design
  • 10.3.2 Robust Design
  • 10.4 Exercises
  • 10.5 Notes
  • 11 Invariants and Invariance-Based Control
  • 11.1 Overview
  • 11.2 Nominal and Robust Forward Invariance
  • 11.2.1 Forward Invariance
  • 11.2.2 Weak Forward Invariance
  • 11.2.3 Robust Forward Invariance
  • 11.3 Design
  • 11.4 Exercises
  • 11.5 Notes
  • 12 Temporal Logic
  • 12.1 Overview