Cargando…

Hybrid Feedback Control /

A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sanfelice, Ricardo G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2021]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1223098136
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 201121s2021 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d EBLCP  |d JSTOR  |d OCLCO  |d OCLCF  |d YDXIT  |d YDX  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 0691189536  |q (electronic book) 
020 |a 9780691189536  |q (electronic bk.) 
029 1 |a AU@  |b 000068571288 
035 |a (OCoLC)1223098136 
037 |a 22573/ctv131nb52  |b JSTOR 
050 4 |a TJ216  |b .S35 2021 
082 0 4 |a 629.83  |2 23 
049 |a UAMI 
100 1 |a Sanfelice, Ricardo G. 
245 1 0 |a Hybrid Feedback Control /  |c Ricardo G. Sanfelice. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2021] 
300 |a 1 online resource (421 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Title -- Copyright -- Dedicaiton -- Contents -- Preface -- List of Symbols -- 1 Introduction -- 1.1 Overview -- 1.2 Why Hybrid Control? -- 1.2.1 Hybrid Models Capture Rich Behavior -- 1.2.2 Continuous-Time Systems not Stabilizable via Continuous State-Feedback Can Be Stabilized via Hybrid Control -- 1.2.3 Almost Global Asymptotic Stability Turns Global -- 1.2.4 Nonrobust Stability Becomes Robust -- 1.2.5 Controlled Intersample Behavior and Aperiodic Sampling -- 1.2.6 Hybrid Feedback Control Improves Performance -- 1.3 Exercises -- 1.4 Notes -- 2 Modeling Framework -- 2.1 Overview 
505 8 |a 2.2 On Truly Hybrid Models -- 2.3 Modeling -- 2.3.1 From Plants and Controllers to Closed-Loop Systems -- 2.3.2 Hybrid Basic Conditions -- 2.3.3 Solution Concept -- 2.3.4 Existence of Solutions to Closed-Loop Systems -- 2.3.5 Hybrid System Models with Disturbances -- 2.4 Numerical Simulation -- 2.5 Exercises -- 2.6 Notes -- 3 Notions and Analysis Tools -- 3.1 Overview -- 3.2 Notions -- 3.2.1 Asymptotic Stability -- 3.2.2 Invariance -- 3.2.3 Robustness to Disturbances -- 3.3 Analysis Tools -- 3.3.1 Hybrid Lyapunov Theorem -- 3.3.2 Hybrid Invariance Principle 
505 8 |a 3.3.3 Robustness from KL Pre-Asymptotic Stability -- 3.4 Exercises -- 3.5 Notes -- 4 Uniting Control -- 4.1 Overview -- 4.2 Hybrid Controller -- 4.3 Closed-Loop System -- 4.4 Design -- 4.5 Exercises -- 4.6 Notes -- 5 Event-Triggered Control -- 5.1 Overview -- 5.2 Hybrid Controller -- 5.3 Closed-Loop System -- 5.4 Design -- 5.4.1 Completeness of Maximal Solutions -- 5.4.2 Minimum Time in Between Events -- 5.4.3 Pre-Asymptotic Stability -- 5.5 Exercises -- 5.6 Notes -- 6 Throw-Catch Control -- 6.1 Overview -- 6.2 Hybrid Controller -- 6.3 Closed-Loop System -- 6.4 Design 
505 8 |a 6.4.1 Design of Local Stabilizer k0 -- 6.4.2 Design of Local Stabilizers ki, s and Sets Ai, s -- 6.4.3 Design of Open-Loop Control Laws -- 6.4.4 Design of Bootstrap Controller and Sets -- 6.5 Exercises -- 6.6 Notes -- 7 Synergistic Control -- 7.1 Overview -- 7.2 Hybrid Controller -- 7.3 Closed-Loop System -- 7.4 Design -- 7.4.1 The General Case -- 7.4.2 The Control Affine Case -- 7.5 Exercises -- 7.6 Notes -- 8 Supervisory Control -- 8.1 Overview -- 8.2 Hybrid Controller -- 8.3 Closed-Loop System -- 8.4 Design -- 8.5 Exercises -- 8.6 Notes -- 9 Passivity-Based Control -- 9.1 Overview 
505 8 |a 9.2 Passivity -- 9.3 Pre-Asymptotic Stability from Passivity -- 9.4 Design -- 9.5 Exercises -- 9.6 Notes -- 10 Feedback Design via Control Lyapunov Functions -- 10.1 Overview -- 10.2 Control Lyapunov Functions -- 10.3 Design -- 10.3.1 Nominal Design -- 10.3.2 Robust Design -- 10.4 Exercises -- 10.5 Notes -- 11 Invariants and Invariance-Based Control -- 11.1 Overview -- 11.2 Nominal and Robust Forward Invariance -- 11.2.1 Forward Invariance -- 11.2.2 Weak Forward Invariance -- 11.2.3 Robust Forward Invariance -- 11.3 Design -- 11.4 Exercises -- 11.5 Notes -- 12 Temporal Logic -- 12.1 Overview 
520 |a A comprehensive introduction to hybrid control systems and designHybrid control systems exhibit both discrete changes, or jumps, and continuous changes, or flow. An example of a hybrid control system is the automatic control of the temperature in a room: the temperature changes continuously, but the control algorithm toggles the heater on or off intermittently, triggering a discrete jump within the algorithm. Hybrid control systems feature widely across disciplines, including biology, computer science, and engineering, and examples range from the control of cellular responses to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid control systems. In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to hybrid control systems and develops new tools for their analysis and design. Hybrid behavior can occur in one or more subsystems of a feedback system, and Sanfelice offers a unified control theory framework, filling an important gap in the control theory literature. In addition to the theoretical framework, he includes a plethora of examples and exercises, a Matlab toolbox (as well as two open-source versions), and an insightful overview at the beginning of each chapter. Relevant to dynamical systems theory, applied mathematics, and computer science, Hybrid Feedback Control will be useful to students and researchers working on hybrid systems, cyber-physical systems, control, and automation. 
588 0 |a Online resource; title from digital title page (viewed on March 03, 2021). 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Feedback control systems. 
650 6 |a Systèmes à réaction. 
650 7 |a Feedback control systems.  |2 fast  |0 (OCoLC)fst00922447 
776 0 8 |i Print version:  |a Sanfelice, Ricardo G.  |t Hybrid Feedback Control.  |d Princeton : Princeton University Press, ©2021  |z 9780691180229 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv131btfx  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6376042 
938 |a EBSCOhost  |b EBSC  |n 2503953 
938 |a YBP Library Services  |b YANK  |n 16826692 
994 |a 92  |b IZTAP