Cargando…

Renormalization group /

Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Benfatto, Giuseppe, 1944-
Otros Autores: Gallavotti, Giovanni
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, NJ : Princeton University Press, c1995.
Colección:Physics notes ; 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_on1206364357
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 950314s1995 njua ob 001 0 eng
010 |a  2021694921 
040 |a DLC  |b eng  |e pn  |c DLC  |d EBLCP  |d JSTOR  |d OCLCO  |d YWS  |d OCLCQ 
019 |a 1228640857  |a 1229925497  |a 1231606252 
020 |a 9780691221694  |q ebook 
020 |a 0691221693 
020 |z 0691044473 (alk. paper) 
020 |z 0691044465 (pbk. : alk. paper) 
020 |z 9780691044477 
020 |z 9780691044460 
029 1 |a AU@  |b 000068335304 
035 |a (OCoLC)1206364357  |z (OCoLC)1228640857  |z (OCoLC)1229925497  |z (OCoLC)1231606252 
037 |a 22573/ctv1733z7z  |b JSTOR 
050 0 0 |a QC20.7.R43 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 0 |a 530.1/33  |2 20 
084 |a 33.06  |2 bcl 
084 |a 33.00  |2 bcl 
084 |a 33.23  |2 bcl 
084 |a 33.24  |2 bcl 
084 |a *58Z05  |2 msc 
084 |a 81-01  |2 msc 
084 |a 81T17  |2 msc 
084 |a 82-01  |2 msc 
084 |a 82B28  |2 msc 
084 |a UG 3900  |2 rvk 
084 |a UO 4020  |2 rvk 
084 |a PHY 012f  |2 stub 
084 |a PHY 025f  |2 stub 
049 |a UAMI 
100 1 |a Benfatto, Giuseppe,  |d 1944- 
245 1 0 |a Renormalization group /  |c Giuseppe Benfatto and Giovanni Gallavotti. 
260 |a Princeton, NJ :  |b Princeton University Press,  |c c1995. 
300 |a 1 online resource (viii, 142 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Physics notes ;  |v 1 
504 |a Includes bibliographical references (p. [135]-140) and indexes. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a Ch. 1. Introduction -- Ch. 2. Problems Equivalent to the Analysis of Suitable Functional Integrals: Critical Point and Field Theory -- Ch. 3. Other Functional Integrals: Fermi Sphere and Bose Condensation -- Ch. 4. Effective Potentials and Schwinger Functions -- Ch. 5. Multiscale Decomposition of Propagators and Fields: Running Effective Potentials -- Ch. 6. Renormalization Group: Relevant and Irrelevant Components of the Effective Potentials -- Ch. 7. Asymptotic Freedom: Upper Critical Dimension -- Ch. 8. Beyond the Linear Approximations: The Beta Function and Perturbation Theory -- Ch. 9. The Beta Function as a Dynamical System: Asymptotic Freedom of Marginal Theories -- Ch. 10. Anomalous Dimension -- Ch. 11. The Fermi Liquid and the Luttinger Model -- Ch. 12. The Generic Critical Point for d = 3, [Gamma] = 0: The [Epsilon]-Expansion -- Ch. 13. Bose Condensation: Reformulation -- Ch. 14. Bose Condensation: Effective Potentials -- Ch. 15. The Beta Function for the Bose Condensation -- A Brief Historical Note -- Appendix 1. The Free Fermion Propagator -- Appendix 2. Grassmannian Integration -- Appendix 3. Trees and Feynman Graphs -- Appendix 4. Schwinger Functions and Anomalous Dimension -- Appendix 5. Propagators for the Bose Gas -- Appendix 6. The Beta Function for the Bose Gas. 
520 |a Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Renormalization group. 
650 0 |a Critical phenomena (Physics) 
650 6 |a Groupe de renormalisation. 
650 6 |a Phénomène critique (Physique) 
650 7 |a 33.06 mathematical methods of physics.  |0 (NL-LeOCL)077595556  |2 bcl 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Critical phenomena (Physics)  |2 fast  |0 (OCoLC)fst00883681 
650 7 |a Renormalization group.  |2 fast  |0 (OCoLC)fst01094654 
650 7 |a Kritisches Phänomen  |2 gnd 
650 7 |a Renormierungsgruppe  |2 gnd 
650 1 7 |a Renormalization group methods.  |2 gtt 
650 1 7 |a Kritische verschijnselen.  |2 gtt 
650 7 |a Groupe de renormalisation.  |2 ram 
650 7 |a Phénomènes critiques (Physique)  |2 ram 
700 1 |a Gallavotti, Giovanni. 
776 0 8 |i Print version:  |t Renormalization group  |d Princeton, NJ : Princeton University Press, c1995.  |z 0691044473 (alk. paper)  |w (DLC) 95010533 
830 0 |a Physics notes ;  |v 1. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv173dzrr  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6374730 
994 |a 92  |b IZTAP