Cargando…

The structure of groups with a quasiconvex hierarchy /

"This monograph weaves together fundamentals of Mikhail Leonidovich Gromov's hyperbolic groups with the theory of cube complexes dual to spaces with walls. Many fundamental new ideas and methodologies are presented here for the first time: A cubical small-cancellation theory generalizing i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wise, Daniel T., 1971- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2021.
Colección:Annals of mathematics studies ; Number 209
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1195815511
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 200909s2021 nju ob 001 0 eng
010 |a  2020040294 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d UKAHL  |d UIU  |d JSTOR  |d YDX  |d CUV  |d DLC  |d OCLCO  |d OCLCQ  |d N$T  |d QGK  |d OCLCO 
020 |a 069121350X 
020 |a 9780691213507  |q (electronic bk.) 
020 |z 9780691170442  |q (hardback) 
020 |z 9780691170459  |q (paperback) 
029 1 |a AU@  |b 000068253617 
035 |a (OCoLC)1195815511 
037 |a 22573/ctv158nb04  |b JSTOR 
042 |a pcc 
050 0 0 |a QA174.2 
072 7 |a MAT  |x 014000  |2 bisacsh 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 0 |a 512/.2  |2 23 
049 |a UAMI 
100 1 |a Wise, Daniel T.,  |d 1971-  |e author. 
245 1 4 |a The structure of groups with a quasiconvex hierarchy /  |c Daniel T. Wise. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2021. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies ;  |v Number 209 
504 |a Includes bibliographical references and index. 
520 |a "This monograph weaves together fundamentals of Mikhail Leonidovich Gromov's hyperbolic groups with the theory of cube complexes dual to spaces with walls. Many fundamental new ideas and methodologies are presented here for the first time: A cubical small-cancellation theory generalizing ideas from the 1960's, a version of "Dehn Filling" that works in the category of special cube complexes, and a variety of new results about right-angled Artin groups. The book culminates by providing an unexpected new theorem about the nature of hyperbolic groups that are constructible as amalgams. Among the stunning applications, are the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of R.J. Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, the book outlines the author's program towards the resolution of the most important remaining conjectures of William Thurston, and achieves substantial progress in this direction. This monograph, which is richly illustrated with over 100 drawings, will be of interest to graduate students and scholars working in geometry, algebra, and topology. This groundbreaking monograph, intended for the Annals of Math series, lays the mathematical groundwork for the solution of the Thurston-Haken Conjecture, a significant result in geometric group theory. It outlines one of the deepest and most surprising pieces of this result, which also has a variety of other implications for geometric group theory. This work also has applications to low-dimensional topology, and the results in this book have since been used by other mathematicians to provide other important results"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgments --  |t Chapter One Introduction --  |t Chapter Two CAT(0) Cube Complexes --  |t Chapter Three Cubical Small-Cancellation Theory --  |t Chapter Four Torsion and Hyperbolicity --  |t Chapter Five New Walls and the B(6) Condition --  |t Chapter Six Special Cube Complexes --  |t Chapter Seven Cubulations --  |t Chapter Eight Malnormality and Fiber-Products --  |t Chapter Nine Splicing Walls --  |t Chapter Ten Cutting X ∗ --  |t Chapter Eleven Hierarchies --  |t Chapter Twelve Virtually Special Quotient Theorem --  |t Chapter Thirteen Amalgams of Virtually Special Groups --  |t Chapter Fourteen Large Fillings Are Hyperbolic and Preservation of Quasiconvexity --  |t Chapter Fifteen Relatively Hyperbolic Case --  |t Chapter Sixteen Largeness and Omnipotence --  |t Chapter Seventeen Hyperbolic 3-Manifolds with a Geometrically Finite Incompressible Surface --  |t Chapter Eighteen Limit Groups and Abelian Hierarchies --  |t Chapter Nineteen Application Towards One-Relator Groups --  |t Chapter Twenty Problems --  |t References --  |t Index 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Hyperbolic groups. 
650 0 |a Group theory. 
650 6 |a Groupes hyperboliques. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS / Group Theory  |2 bisacsh 
650 7 |a Group theory  |2 fast 
650 7 |a Hyperbolic groups  |2 fast 
776 0 8 |i Print version:  |a Wise, Daniel T., 1971-  |t The structure of groups with a quasiconvex hierarchy  |d Princeton : Princeton University Press, 2021.  |z 9780691170442  |w (DLC) 2020040293 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv1574pr6  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38263467 
938 |a YBP Library Services  |b YANK  |n 16896340 
938 |a EBSCOhost  |b EBSC  |n 2569736 
994 |a 92  |b IZTAP