Cargando…

Classical and Nonclassical Logics : An Introduction to the Mathematics of Propositions.

So-called classical logic--the logic developed in the early twentieth century by Gottlob Frege, Bertrand Russell, and others--is computationally the simplest of the major logics, and it is adequate for the needs of most mathematicians. But it is just one of the many kinds of reasoning in everyday th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schechter, Eric (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2005.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 JSTOR_on1193129841
003 OCoLC
005 20231005004200.0
006 m d
007 cr |||||||||||
008 200912s2005 nju o 001 0 eng d
010 |z  2004066030 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d JSTOR  |d OCLCF  |d CSA  |d OCLCO  |d OCL  |d OCLCO  |d YWS  |d OCLCQ  |d INARC  |d OCLCO 
015 |a GBA546142  |2 bnb 
016 7 |a 013210286  |2 Uk 
019 |a 1391288263 
020 |a 9780691220147  |q (electronic bk.) 
020 |a 069122014X  |q (electronic bk.) 
020 |z 0691122792 (acid-free paper) 
020 |z 9780691122793 (acid-free paper) 
029 1 |a AU@  |b 000068091326 
035 |a (OCoLC)1193129841  |z (OCoLC)1391288263 
037 |a 22573/ctv15qsjjg  |b JSTOR 
050 4 |a QA9.3  |b .S39 2005eb 
082 0 4 |a 160  |2 23 
049 |a UAMI 
100 1 |a Schechter, Eric,  |e author  |1 http://viaf.org/viaf/34609936 
245 1 0 |a Classical and Nonclassical Logics :  |b An Introduction to the Mathematics of Propositions. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2005. 
300 |a 1 online resource (520 pages) 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
500 |a Description based upon print version of record. 
505 0 |a Cover Page -- Half-title Page -- Title Page -- Copyright Page -- Contents -- A. Preliminaries -- 1. Introduction for teachers -- Purpose and intended audience -- Topics in the book -- Why pluralism? -- Feedback -- Acknowledgments -- 2. Introduction for students -- Who should study logic? -- Formalism and certification -- Language and levels -- Semantics and syntactics -- Historical perspective -- Pluralism -- Jarden's example (optional) -- 3. Informal set theory -- Sets and their members -- Russell's paradox -- Subsets -- Functions 
505 8 |a The Axiom of choice (optional) -- Operations on sets -- Venn diagrams -- Syllogisms (optional) -- Infinite sets -- 4. Topologies and interiors (postponable) -- Topologies -- Interiors -- Generated topologies and finite topologies (optional) -- 5. English and informal classical logic -- Language and bias -- Parts of speech -- Semantic values -- Disjunction (or) -- Conjunction (and) -- Negation (not) -- Material implication -- Cotenability fusion and constants (postponable) -- Methods of proof -- Working backwards -- Quantifiers -- Induction 
505 8 |a Induction examples (optional) -- 6. Definition of a formal language -- The alphabet -- The grammar -- Removing parentheses -- Denned symbols -- Prefix notation (optional) -- Variable sharing -- Formula schemes -- Order preserving or reversing subformulas (postponable) -- B. Semantics -- 7. Definitions for semantics -- Interpretations -- Functional interpretations -- Tautology and truth preservation -- 8. Numerically valued interpretations -- The two-valued interpretation -- Fuzzy interpretations -- Two integer-valued interpretations -- More about comparative logic 
505 8 |a More about Sugihara's interpretation -- 9. Set-valued interpretations -- Powerset interpretations -- Hexagon interpretation (optional) -- The crystal interpretation -- church's diamond (optional) -- 10. Topological semantics (postponable) -- Topological interpretations -- Examples -- Common tautologies -- Nonredundancy of symbols -- Variable sharing -- Adequacy of finite topologies (optional) -- Disjunction property (optional) -- 11. More advanced topics in semantics -- common tautologies -- Images of interpretations -- Dugundji formulas -- C. Basic syntactics 
505 8 |a 12. Inference systems -- 13. Basic implication -- Assumptions of basic implication -- A few easy derivations -- Lemmaless expansions -- Detachmental corollaries -- Iterated implication (postponable) -- 14. Basic logic -- Further assumptions -- Basic positive logic -- Basic negation -- Substitution principles -- D. One-formula extensions -- 15. Contraction -- Weak contraction -- Contraction -- 16. Expansion and positive paradox -- Expansion and mingle -- Positive paradox (strong expansion) -- Further consequences of positive paradox -- 17. Explosion -- 18. Fusion 
500 |a 19. Not-elimination 
520 |a So-called classical logic--the logic developed in the early twentieth century by Gottlob Frege, Bertrand Russell, and others--is computationally the simplest of the major logics, and it is adequate for the needs of most mathematicians. But it is just one of the many kinds of reasoning in everyday thought. Consequently, when presented by itself--as in most introductory texts on logic--it seems arbitrary and unnatural to students new to the subject. In Classical and Nonclassical Logics, Eric Schechter introduces classical logic alongside constructive, relevant, comparative, and other nonclassical logics. Such logics have been investigated for decades in research journals and advanced books, but this is the first textbook to make this subject accessible to beginners. While presenting an assortment of logics separately, it also conveys the deeper ideas (such as derivations and soundness) that apply to all logics. The book leads up to proofs of the Disjunction Property of constructive logic and completeness for several logics. The book begins with brief introductions to informal set theory and general topology, and avoids advanced algebra; thus it is self-contained and suitable for readers with little background in mathematics. It is intended primarily for undergraduate students with no previous experience of formal logic, but advanced students as well as researchers will also profit from this book. 
504 |a Includes bibliographical references (p. [487]-491) and index. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Mathematics  |x Philosophy. 
650 0 |a Proposition (Logic) 
650 6 |a Mathématiques  |x Philosophie. 
650 6 |a Proposition (Logique) 
650 7 |a Proposition (Logic)  |2 fast 
650 7 |a Mathematics  |x Philosophy  |2 fast 
653 |a Ackermann constants. 
653 |a Banach-Tarski paradox. 
653 |a Brouwer. 
653 |a Eubulides paradox. 
653 |a Herbrand Principle. 
653 |a Heyting algebras. 
653 |a Jarden's Proof. 
653 |a adequacy. 
653 |a algorithm. 
653 |a ambiguity. 
653 |a binary operator. 
653 |a certification. 
653 |a chain order. 
653 |a comparative logic. 
653 |a consequence. 
653 |a derivation. 
653 |a detachment. 
653 |a discrete topology. 
653 |a equivalence class. 
653 |a excluded middle. 
653 |a extremes. 
653 |a functional interpretation. 
653 |a fuzzy logics. 
653 |a generated topology. 
653 |a homomorphism. 
653 |a idempotency. 
653 |a implication. 
653 |a informal set theory. 
653 |a lower set topology. 
653 |a monotone. 
653 |a natural numbers. 
653 |a parentheses. 
653 |a quantifier. 
653 |a semantic. 
653 |a symbol sharing. 
653 |a tautology. 
776 0 8 |i Print version:  |a Schechter, Eric  |t Classical and Nonclassical Logics : An Introduction to the Mathematics of Propositions  |d Princeton : Princeton University Press,c2005 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv15r582q  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6326285 
938 |a Internet Archive  |b INAR  |n classicalnonclas0000sche 
994 |a 92  |b IZTAP