Introduction to toric varieties /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
1993.
|
Colección: | Annals of mathematics studies ;
no. 131. William H. Roever lectures in geometry. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; Copyright; Dedication; CONTENTS; Chapter 1 Definitions and examples ; 1.1 Introduction ; 1.2 Convex polyhedral cones ; 1.3 Affine toric varieties ; 1.4 Fans and toric varieties ; 1.5 Toric varieties from polytopes ; Chapter 2 Singularities and compactness.
- 2.1 Local properties of toric varieties 2.2 Surfaces; quotient singularities ; 2.3 One-parameter subgroups; limit points ; 2.4 Compactness and properness ; 2.5 Nonsingular surfaces ; 2.6 Resolution of singularities ; Chapter 3 Orbits, topology, and line bundles ; 3.1 Orbits.
- 3.2 Fundamental groups and Euler characteristics 3.3 Divisors ; 3.4 Line bundles ; 3.5 Cohomology of line bundles ; Chapter 4 Moment maps and the tangent bundle ; 4.1 The manifold with singular corners ; 4.2 Moment map ; 4.3 Differentials and the tangent bundle ; 4.4 Serre duality.
- 4.5 Betti numbers Chapter 5 Intersection theory ; 5.1 Chow groups ; 5.2 Cohomology of nonsingular toric varieties ; 5.3 Riemann-Roch theorem ; 5.4 Mixed volumes ; 5.5 Bézout theorem ; 5.6 Stanley's theorem ; Notes ; References ; Index of Notation ; Index.