|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
JSTOR_on1175622542 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
900316s1990 njua ob 000 0 eng d |
040 |
|
|
|a UX1
|b eng
|e pn
|c UX1
|d OCLCO
|d YDXCP
|d JSTOR
|d OCLCF
|d DEBBG
|d IDEBK
|d EBLCP
|d N$T
|d UIU
|d DEBSZ
|d IOG
|d TXC
|d LVT
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 945482802
|
020 |
|
|
|a 0691085986
|q (alk. paper)
|
020 |
|
|
|a 9780691085982
|
020 |
|
|
|a 0691085994
|q (alk. paper)
|
020 |
|
|
|a 9780691085999
|
020 |
|
|
|a 1400882435
|q (electronic bk.)
|
020 |
|
|
|a 9781400882434
|q (electronic bk.)
|
029 |
1 |
|
|a CHBIS
|b 010896190
|
029 |
1 |
|
|a CHVBK
|b 483397911
|
029 |
1 |
|
|a DEBBG
|b BV043712503
|
029 |
1 |
|
|a DEBSZ
|b 478625391
|
035 |
|
|
|a (OCoLC)1175622542
|z (OCoLC)945482802
|
037 |
|
|
|a 22573/ctt1bdtgnc
|b JSTOR
|
050 |
|
4 |
|a QA246.7
|b .K38 1990
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.73
|2 20
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Katz, Nicholas M.,
|d 1943-
|
245 |
1 |
0 |
|a Exponential sums and differential equations /
|c by Nicholas M. Katz.
|
260 |
|
|
|a Princeton, N.J. :
|b Princeton University Press,
|c 1990.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Annals of mathematics studies ;
|v no. 124
|
504 |
|
|
|a Includes bibliographical references (pages 425-430).
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Introduction; Chapter 1- Results from Representation Theory; 1.0-1.6 Statements of the main results; 1.7 The proofs; 1.8 Appendix: direct sums and tensor products; Chapter 2- D.E.'s and D-modules; 2.1 The basic set-up; 2.2 Torsors and lifting problems; 2.3 Relation to transcendence; 2.4 Behavior of Ggal under specialization; 2.5 Specialization of morphisms; 2.6 Direct sums and tensor products; 2.7 A basic trichotomy; 2.8 The main D.E. theorem; 2.9 Generalities on D-modules on curves; 2.10 Some equations on A^1, with a transition to Gm.
|
505 |
8 |
|
|a 2.10.16 Location of the singularities of a Fourier Transform2.11 Systematic study of equations on Gm; Chapter 3- The generalized hypergeometric equation; 3.1 Basic definitions; 3.2-3.3 Basic results about irreducibility and contiguity; 3.4 Duality; 3.5 The case n= m; Lie irreducibility, rigidity, Belyi and Kummer induction; 3.6 The case n `"m; 3.7 Intrinsic characterization; rigidity for n `"m; 3.8 Direct sums, tensor products, and Kummer inductions; Chapter 4 Detailed analysis of the exceptional cases; 4.0 Eliminating a few cases; 4.1 The G2 case.
|
505 |
8 |
|
|a 4.2 The Spin(7), PSL(3) and SL(2)xSL(2)xSL(2) cases4.3 The PSL(3) case: detailed analysis; 4.4 The Spin(7) case: detailed analysis; 4.5 The SL(2)xSL(2)xSL(2) case; 4.6 The SL(3)xSL(3) case; Chapter 5- Convolution of D-modules; 5.1 Generalities; 5.2 Convolution on Gm and Fourier Transform on A^1; 5.3 Convolution of hypergeometrics on Gm; 5.4 Motivic interpretation of hypergeometrics of type (n, n); 5.5 Application to Grothendieck's p-curvature conjecture; Chapter 6- Fourier transforms of Kummer pullbacks of hypergeometrics; 6.1 Some D.E.'s on A^1 as Kummer pullbacks of hypergeometrics.
|
505 |
8 |
|
|a 6.2 Fourier transforms of Kummer pullbacks of hypergeometrics: a remarkable stability6.3 convolution of hypergeometrics with nondisjoint exponents, via a modified sort of hypergeometric; 6.4 Applications to Fourier transforms of Kummer pullbacks of hypergeometrics; Chapter 7- The l-adic theory; 7.1 Exceptional sets of primes; 7.2 l-adic analogue of the main D.E. theorem 2.8.1; 7.3 Construction of irreducible sheaves via Fourier transform; 7.4 Local monodromy of Fourier transforms d'apres Laumon; 7.5 ""Numerical"" explicitation of Lauman's results.
|
505 |
8 |
|
|a 7.6 Pseudoreflection examples and applications7.7 A highest slope application; 7.8 Fourier transform-stable classes of sheaves; 7.9 Fourier transforms of tame pseudoreflection sheaves; 7.10 Examples; 7.11 Sato-Tate laws for one-variable exponential sums; 7.12 Special linear examples; 7.13 Symplectic examples; 7.14 Orthogonal examples; Chapter 8- l-adic hypergeometrics; 8.1 Rapid review of perversity, Fourier transform, and convolution; 8.2 Definition of hypergeometric complexes and hypergeometric sums over finite fields; 8.3 Variant: hypergeometric complexes over algebraically closed fields.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
650 |
|
0 |
|a Exponential sums.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
6 |
|a Sommes exponentielles.
|
650 |
|
6 |
|a Équations différentielles.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations.
|2 fast
|0 (OCoLC)fst00893446
|
650 |
|
7 |
|a Exponential sums.
|2 fast
|0 (OCoLC)fst00918663
|
653 |
|
0 |
|a Differential equations
|
653 |
|
0 |
|a Exponential sums
|
776 |
0 |
8 |
|i Print version:
|a Katz, Nicholas M., 1943-
|t Exponential sums and differential equations.
|d Princeton, N.J. : Princeton University Press, 1990
|w (DLC) 90034934
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 124.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1bd6m1x
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4738723
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1432944
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis34227309
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12887044
|
994 |
|
|
|a 92
|b IZTAP
|