Cohomology of quotients in symplectic and algebraic geometry
These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
1984.
|
Colección: | Mathematical notes (Princeton University Press) ;
31. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover Page
- Title Page
- Copyright Page
- Contents
- 1. Introduction
- Part I. The symplectic approach
- 2. The moment map
- 3. Critical points for the square of the moment map
- 4. The square of the moment map as a Morse function
- 5. Cohomological formulae
- 6. Complex group actions on Kahler manifolds
- 7. Quotients of Kahler manifolds
- 8. The relationship with geometric invariant theory
- 9. Some remarks on non-compact manifolds
- 10. Appendix. Morse theory extended to minimally degenerate functions
- Part II . The algebraic approach
- 11. The basic idea
- 12. Stratifications over arbitrary algebraically closed fields
- 13. The strata of a nonsingular variety
- 14. Hodge numbers
- 15. Calculating cohomology by counting points
- 16. Examples
- References