Cargando…

Cohomology of quotients in symplectic and algebraic geometry

These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kirwan, Frances Clare, 1959- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 1984.
Colección:Mathematical notes (Princeton University Press) ; 31.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 JSTOR_on1159420484
003 OCoLC
005 20231005004200.0
006 m o d |
007 cr |||||||||||
008 840706s1984 nju ob 000 0 eng d
010 |a  84015143  
040 |a UKAHL  |b eng  |e rda  |c UKAHL  |d JSTOR  |d UX1  |d OCLCF  |d EBLCP  |d UIU  |d CSA  |d OCLCO  |d OCL  |d YDX  |d OCLCO  |d YWS  |d OCLCQ 
019 |a 1157089397  |a 1175634246 
020 |a 9780691214566  |q (electronic bk.) 
020 |a 0691214565  |q (electronic bk.) 
020 |a 0691083703  |q (pbk.) 
020 |a 9780691083704 
035 |a (OCoLC)1159420484  |z (OCoLC)1157089397  |z (OCoLC)1175634246 
037 |a 22573/ctv10wzgdv  |b JSTOR 
050 4 |a QA564  |b .K53 1984eb 
082 0 4 |a 512/.33  |2 23 
049 |a UAMI 
100 1 |a Kirwan, Frances Clare,  |d 1959-  |e author  |1 http://viaf.org/viaf/87201 
245 1 0 |a Cohomology of quotients in symplectic and algebraic geometry  |c by Frances Clare Kirwan. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 1984. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Mathematical notes ;  |v 31 
504 |a Bibliography: pages 208-210. 
505 0 |a Cover Page -- Title Page -- Copyright Page -- Contents -- 1. Introduction -- Part I. The symplectic approach -- 2. The moment map -- 3. Critical points for the square of the moment map -- 4. The square of the moment map as a Morse function -- 5. Cohomological formulae -- 6. Complex group actions on Kahler manifolds -- 7. Quotients of Kahler manifolds -- 8. The relationship with geometric invariant theory -- 9. Some remarks on non-compact manifolds -- 10. Appendix. Morse theory extended to minimally degenerate functions -- Part II . The algebraic approach -- 11. The basic idea 
505 8 |a 12. Stratifications over arbitrary algebraically closed fields -- 13. The strata of a nonsingular variety -- 14. Hodge numbers -- 15. Calculating cohomology by counting points -- 16. Examples -- References 
520 |a These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Group schemes (Mathematics) 
650 0 |a Algebraic varieties. 
650 0 |a Homology theory. 
650 0 |a Symplectic manifolds. 
650 6 |a Schémas en groupes. 
650 6 |a Variétés algébriques. 
650 6 |a Homologie. 
650 6 |a Variétés symplectiques. 
650 7 |a Symplectic manifolds.  |2 fast  |0 (OCoLC)fst01140991 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a Group schemes (Mathematics)  |2 fast  |0 (OCoLC)fst00948511 
650 7 |a Algebraic varieties.  |2 fast  |0 (OCoLC)fst00804944 
653 |a "ient variety. 
653 |a Cohomological formulae. 
653 |a Critical points. 
653 |a Deligne calls. 
653 |a Grassmannian. 
653 |a Hodge numbers. 
653 |a Jacobian matrices. 
653 |a Lie algebra. 
653 |a Morse function. 
653 |a algebraic geometry. 
653 |a cotangent bundles. 
653 |a critical subsets. 
653 |a denotes. 
653 |a equivariantly perfect. 
653 |a geometry. 
653 |a integers. 
653 |a invariant. 
653 |a moment map. 
653 |a monomials. 
653 |a nonsingular variety. 
653 |a rational cohomology. 
653 |a semistable stratum. 
653 |a subspace. 
653 |a symplectic manifold. 
776 0 8 |i Print version:  |a Kirwan, Frances Clare  |t Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31  |d Princeton : Princeton University Press,c1984  |z 9780691083704 
830 0 |a Mathematical notes (Princeton University Press) ;  |v 31. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv10vm2m8  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 16773909 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37443443 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6214780 
994 |a 92  |b IZTAP