Cohomology of quotients in symplectic and algebraic geometry
These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. :
Princeton University Press,
1984.
|
Colección: | Mathematical notes (Princeton University Press) ;
31. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions. |
---|---|
Descripción Física: | 1 online resource |
Bibliografía: | Bibliography: pages 208-210. |
ISBN: | 9780691214566 0691214565 0691083703 9780691083704 |