Cargando…

Cohomology of quotients in symplectic and algebraic geometry

These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kirwan, Frances Clare, 1959- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, 1984.
Colección:Mathematical notes (Princeton University Press) ; 31.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions.
Descripción Física:1 online resource
Bibliografía:Bibliography: pages 208-210.
ISBN:9780691214566
0691214565
0691083703
9780691083704