Berkeley lectures on p-adic geometry /
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoi...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
[2020]
|
Colección: | Annals of mathematics studies ;
no. 207. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Lecture 1 Introduction
- Lecture 2: Adic spaces
- Lecture 3: Adic spaces II
- Lecture 4: Examples of adic spaces
- Lecture 5: Complements on adic spaces
- Lecture 6: Perfectoid rings
- Lecture 7: Perfectoid spaces
- Lecture 8: Diamonds
- Lecture 9: Diamonds II
- Lecture 10 Diamonds associated with adic spaces
- Lecture 11: Mixed-characteristic shtukas
- Lecture 12: Shtukas with one leg
- Lecture 13 Shtukas with one leg II
- Lecture 14: Shtukas with one leg III
- Lecture 15: Examples of diamonds
- Lecture 16: Drinfeld's lemma for diamonds
- Lecture 17: The v-topology
- Lecture 18: v-sheaves associated with perfect and formal schemes
- Lecture 19: The B+dr-affine Grassmannian
- Lecture 20: Families of affine Grassmannians
- Lecture 21: Affine flag varieties
- Lecture 22: Vector bundles and G-torsors on the relative Fargues-Fontaine curve
- Lecture 23: Moduli spaces of shtukas
- Lecture 24 Local Shimura varieties
- Lecture 25 Integral models of local Shimura varieties.