Cargando…

Berkeley lectures on p-adic geometry /

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Scholze, Peter (Autor), Weinstein, Jared (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2020]
Colección:Annals of mathematics studies ; no. 207.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Lecture 1 Introduction
  • Lecture 2: Adic spaces
  • Lecture 3: Adic spaces II
  • Lecture 4: Examples of adic spaces
  • Lecture 5: Complements on adic spaces
  • Lecture 6: Perfectoid rings
  • Lecture 7: Perfectoid spaces
  • Lecture 8: Diamonds
  • Lecture 9: Diamonds II
  • Lecture 10 Diamonds associated with adic spaces
  • Lecture 11: Mixed-characteristic shtukas
  • Lecture 12: Shtukas with one leg
  • Lecture 13 Shtukas with one leg II
  • Lecture 14: Shtukas with one leg III
  • Lecture 15: Examples of diamonds
  • Lecture 16: Drinfeld's lemma for diamonds
  • Lecture 17: The v-topology
  • Lecture 18: v-sheaves associated with perfect and formal schemes
  • Lecture 19: The B+dr-affine Grassmannian
  • Lecture 20: Families of affine Grassmannians
  • Lecture 21: Affine flag varieties
  • Lecture 22: Vector bundles and G-torsors on the relative Fargues-Fontaine curve
  • Lecture 23: Moduli spaces of shtukas
  • Lecture 24 Local Shimura varieties
  • Lecture 25 Integral models of local Shimura varieties.