Cargando…

Berkeley lectures on p-adic geometry /

Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Scholze, Peter (Autor), Weinstein, Jared (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2020]
Colección:Annals of mathematics studies ; no. 207.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1154537794
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 220328t20202020njua ob 001 0 eng
010 |a  2021701964 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d JSTOR  |d UKAHL  |d OCLCF  |d MM9  |d N$T  |d CUV  |d YDX  |d UBY  |d AFU  |d IEEEE  |d SFB  |d EBLCP  |d OCLCQ  |d OCLCO 
019 |a 1187222185 
020 |a 9780691202150  |q ebook 
020 |a 069120215X 
020 |z 9780691202099  |q hardcover 
020 |z 0691202095  |q hardcover 
020 |z 9780691202082  |q paperback 
020 |z 0691202087  |q paperback 
029 1 |a AU@  |b 000069887926 
029 1 |a AU@  |b 000067251331 
035 |a (OCoLC)1154537794  |z (OCoLC)1187222185 
037 |a 22573/ctvs5f36p  |b JSTOR 
037 |a 9452495  |b IEEE 
050 0 0 |a QA242.5 
082 0 4 |a 516.35  |2 23 
049 |a UAMI 
100 1 |a Scholze, Peter,  |e author. 
245 1 0 |a Berkeley lectures on p-adic geometry /  |c Peter Scholze and Jared Weinstein. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (x, 250 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v number 207 
504 |a Includes bibliographical references [pages 241-248] and index. 
505 0 |a Lecture 1 Introduction -- Lecture 2: Adic spaces -- Lecture 3: Adic spaces II -- Lecture 4: Examples of adic spaces -- Lecture 5: Complements on adic spaces -- Lecture 6: Perfectoid rings -- Lecture 7: Perfectoid spaces -- Lecture 8: Diamonds -- Lecture 9: Diamonds II -- Lecture 10 Diamonds associated with adic spaces -- Lecture 11: Mixed-characteristic shtukas -- Lecture 12: Shtukas with one leg -- Lecture 13 Shtukas with one leg II -- Lecture 14: Shtukas with one leg III -- Lecture 15: Examples of diamonds -- Lecture 16: Drinfeld's lemma for diamonds -- Lecture 17: The v-topology -- Lecture 18: v-sheaves associated with perfect and formal schemes -- Lecture 19: The B+dr-affine Grassmannian -- Lecture 20: Families of affine Grassmannians -- Lecture 21: Affine flag varieties -- Lecture 22: Vector bundles and G-torsors on the relative Fargues-Fontaine curve -- Lecture 23: Moduli spaces of shtukas -- Lecture 24 Local Shimura varieties -- Lecture 25 Integral models of local Shimura varieties. 
520 |a Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of "diamonds," which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.  |c Publisher's description. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Arithmetical algebraic geometry. 
650 0 |a p-adic analysis. 
650 0 |a Geometry, Algebraic. 
650 6 |a Géométrie algébrique arithmétique. 
650 6 |a Analyse p-adique. 
650 6 |a Géométrie algébrique. 
650 7 |a Arithmetical algebraic geometry  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a p-adic analysis  |2 fast 
700 1 |a Weinstein, Jared,  |e author. 
776 0 8 |i Print version:  |t Berkeley lectures on p-adic geometry  |d Princeton : Princeton University Press, [2020]  |z 9780691202099  |w (DLC) 2021443575 
830 0 |a Annals of mathematics studies ;  |v no. 207. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvs32rc9  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 16584690 
938 |a EBSCOhost  |b EBSC  |n 2296451 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195826 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37414675 
994 |a 92  |b IZTAP