Cargando…

The Molecular Switch : Signaling and Allostery /

A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Sw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phillips, Rob (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2020]
Colección:Studies in physical biology
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • PART I: THE MAKING OF MOLECULAR SWITCHES
  • 1. It's An Allosteric World
  • 1.1 The Second Secret of Life
  • 1.2 The Broad Reach of the Allostery Concept
  • 1.2.1 Sculpting Biochemistry via Allostery
  • 1.2.2 One- and Two-Component Signal Transduction and the Two-State Philosophy
  • 1.3 Reasoning about Feedback: The Rise of Allostery
  • 1.3.1 The Puzzle
  • 1.3.2 The Resolution of the Molecular Feedback Puzzle
  • 1.3.3 Finding the Allosterome
  • 1.4 Mathematicizing the Two-State Paradigm
  • 1.4.1 Transcendent Concepts in Physics
  • 1.4.2 One Equation to Rule Them All
  • 1.5 Beyond the MWC Two-State Concept
  • 1.5.1 Molecular Agnosticism: MWC versus KNF versus Eigen
  • 1.6 On BeingWrong
  • 1.7 Summary
  • 1.8 Further Reading
  • 1.9 References
  • 2. The Allosterician's Toolkit
  • 2.1 A Mathematical Microscope: Statistical Mechanics Preliminaries
  • 2.1.1 Microstates
  • 2.1.2 The Fundamental Law of Statistical Mechanics
  • 2.1.3 The Dimensionless Numbers of Thermal Physics
  • 2.1.4 Boltzmann and Probabilities
  • 2.2 Case Study in Statistical Mechanics: Ligand-Receptor Binding
  • 2.2.1 Ligand Binding and the Lattice Model of Solutions
  • 2.3 Conceptual Tools of the Trade: Free Energy and Entropy
  • 2.3.1 Resetting Our Zero of Energy Using the Chemical Potential
  • 2.4 The MWC Concept in Statistical Mechanical Language
  • 2.5 Cooperativity and Allostery
  • 2.5.1 Cooperativity and Hill Functions
  • 2.5.2 Cooperativity in the MWC Model
  • 2.6 Internal Degrees of Freedom and Ensemble Allostery
  • 2.7 Beyond Equilibrium
  • 2.8 Summary
  • 2.9 Further Reading
  • 2.10 References
  • PART II: THE LONG REACH OF ALLOSTERY
  • 3. Signaling at the Cell Membrane: Ion Channels
  • 3.1 How Cells Talk to the World
  • 3.2 Biological Processes and Ion Channels
  • 3.3 Ligand-Gated Channels
  • 3.4 Statistical Mechanics of the MWC Channel
  • 3.5 Data Collapse, Natural Variables, and the Bohr Effect
  • 3.5.1 Data Collapse and the Ion-Channel Bohr Effect
  • 3.6 Rate Equation Description of Channel Gating
  • 3.7 Cyclic Nucleotide-Gated Channels
  • 3.8 Beyond the MWC Model in Ion Channelology
  • 3.8.1 Conductance Substates and Conformational Kinetics
  • 3.8.2 The Koshland-Némethy-Filmer Model Revealed
  • 3.8.3 Kinetic Proliferation
  • 3.8.4 The Question of Inactivation
  • 3.9 Summary
  • 3.10 Further Reading
  • 3.11 References
  • 4. How Bacteria Navigate the World around Them
  • 4.1 Bacterial Information Processing
  • 4.1.1 Engelmann's Experiment and Bacterial Aerotaxis
  • 4.1.2 Love Thy Neighbors: Signaling between Bacteria
  • 4.2 Bacterial Chemotaxis
  • 4.2.1 The Chemotaxis Phenomenon
  • 4.2.2 Wiring Up Chemotaxis through Molecular Switching
  • 4.3 MWC Models of Chemotactic Response
  • 4.3.1 MWC Model of Chemotaxis Receptor Clusters
  • 4.3.2 Heterogenous Clustering
  • 4.3.3 Putting It All Together by Averaging
  • 4.4 The Amazing Phenomenon of Physiological Adaptation