Cargando…

The Molecular Switch : Signaling and Allostery /

A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Sw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phillips, Rob (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2020]
Colección:Studies in physical biology
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1154518403
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 200530s2020 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d UKAHL  |d JSTOR  |d YDXIT  |d DEGRU  |d OCLCF  |d NOC  |d YDX  |d N$T  |d OCLCQ  |d OCLCO  |d IEEEE  |d OCLCO  |d OCLCQ  |d YWS  |d OCLCQ 
020 |a 0691200254  |q (electronic book) 
020 |a 9780691200255  |q (electronic bk.) 
029 1 |a AU@  |b 000067958117 
035 |a (OCoLC)1154518403 
037 |a 22573/ctvx52qpb  |b JSTOR 
037 |a 9453430  |b IEEE 
050 4 |a QP517.C45  |b P55 2020 
082 0 4 |a 571.74  |2 23 
084 |a WD 2200  |2 rvk  |0 (DE-625)rvk/148163: 
049 |a UAMI 
100 1 |a Phillips, Rob,  |e author. 
245 1 4 |a The Molecular Switch :  |b Signaling and Allostery /  |c Rob Phillips ; illustrated by Nigel Orme. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2020] 
300 |a 1 online resource (437 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Studies in physical biology 
505 0 |a Cover -- Contents -- Preface -- PART I: THE MAKING OF MOLECULAR SWITCHES -- 1. It's An Allosteric World -- 1.1 The Second Secret of Life -- 1.2 The Broad Reach of the Allostery Concept -- 1.2.1 Sculpting Biochemistry via Allostery -- 1.2.2 One- and Two-Component Signal Transduction and the Two-State Philosophy -- 1.3 Reasoning about Feedback: The Rise of Allostery -- 1.3.1 The Puzzle -- 1.3.2 The Resolution of the Molecular Feedback Puzzle -- 1.3.3 Finding the Allosterome -- 1.4 Mathematicizing the Two-State Paradigm -- 1.4.1 Transcendent Concepts in Physics 
505 8 |a 1.4.2 One Equation to Rule Them All -- 1.5 Beyond the MWC Two-State Concept -- 1.5.1 Molecular Agnosticism: MWC versus KNF versus Eigen -- 1.6 On BeingWrong -- 1.7 Summary -- 1.8 Further Reading -- 1.9 References -- 2. The Allosterician's Toolkit -- 2.1 A Mathematical Microscope: Statistical Mechanics Preliminaries -- 2.1.1 Microstates -- 2.1.2 The Fundamental Law of Statistical Mechanics -- 2.1.3 The Dimensionless Numbers of Thermal Physics -- 2.1.4 Boltzmann and Probabilities -- 2.2 Case Study in Statistical Mechanics: Ligand-Receptor Binding 
505 8 |a 2.2.1 Ligand Binding and the Lattice Model of Solutions -- 2.3 Conceptual Tools of the Trade: Free Energy and Entropy -- 2.3.1 Resetting Our Zero of Energy Using the Chemical Potential -- 2.4 The MWC Concept in Statistical Mechanical Language -- 2.5 Cooperativity and Allostery -- 2.5.1 Cooperativity and Hill Functions -- 2.5.2 Cooperativity in the MWC Model -- 2.6 Internal Degrees of Freedom and Ensemble Allostery -- 2.7 Beyond Equilibrium -- 2.8 Summary -- 2.9 Further Reading -- 2.10 References -- PART II: THE LONG REACH OF ALLOSTERY -- 3. Signaling at the Cell Membrane: Ion Channels 
505 8 |a 3.1 How Cells Talk to the World -- 3.2 Biological Processes and Ion Channels -- 3.3 Ligand-Gated Channels -- 3.4 Statistical Mechanics of the MWC Channel -- 3.5 Data Collapse, Natural Variables, and the Bohr Effect -- 3.5.1 Data Collapse and the Ion-Channel Bohr Effect -- 3.6 Rate Equation Description of Channel Gating -- 3.7 Cyclic Nucleotide-Gated Channels -- 3.8 Beyond the MWC Model in Ion Channelology -- 3.8.1 Conductance Substates and Conformational Kinetics -- 3.8.2 The Koshland-Némethy-Filmer Model Revealed -- 3.8.3 Kinetic Proliferation -- 3.8.4 The Question of Inactivation -- 3.9 Summary 
505 8 |a 3.10 Further Reading -- 3.11 References -- 4. How Bacteria Navigate the World around Them -- 4.1 Bacterial Information Processing -- 4.1.1 Engelmann's Experiment and Bacterial Aerotaxis -- 4.1.2 Love Thy Neighbors: Signaling between Bacteria -- 4.2 Bacterial Chemotaxis -- 4.2.1 The Chemotaxis Phenomenon -- 4.2.2 Wiring Up Chemotaxis through Molecular Switching -- 4.3 MWC Models of Chemotactic Response -- 4.3.1 MWC Model of Chemotaxis Receptor Clusters -- 4.3.2 Heterogenous Clustering -- 4.3.3 Putting It All Together by Averaging -- 4.4 The Amazing Phenomenon of Physiological Adaptation 
500 |a 4.4.1 Adaptation by Hand 
588 0 |a Online resource; title from digital title page (viewed on September 16, 2020). 
520 |a A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery--a powerful explanation of how molecules function across all biological domains--can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena. Rob Phillips weaves together allostery and statistical mechanics via a series of biological vignettes, each of which showcases an important biological question and accompanying physical analysis. Beginning with the study of ligand-gated ion channels and their role in problems ranging from muscle action to vision, Phillips then undertakes increasingly sophisticated case studies, from bacterial chemotaxis and quorum sensing to hemoglobin and its role in mammalian physiology. He looks at G-protein coupled receptors as well as the role of allosteric molecules in gene regulation. Phillips concludes by surveying problems in biological fidelity and offering a speculative chapter on the relationship between allostery and biological Maxwell demons. Appropriate for graduate students and researchers in biophysics, physics, engineering, biology, and neuroscience, The Molecular Switch presents a unified, quantitative model for describing biological signaling phenomena. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Cellular signal transduction. 
650 0 |a Cellular control mechanisms. 
650 2 |a Signal Transduction 
650 6 |a Transduction du signal cellulaire. 
650 6 |a Régulation cellulaire. 
650 7 |a SCIENCE  |x Life Sciences  |x Biophysics.  |2 bisacsh 
650 7 |a Cellular control mechanisms  |2 fast  |0 (OCoLC)fst00850278 
650 7 |a Cellular signal transduction  |2 fast  |0 (OCoLC)fst00850288 
653 |a Alexander Gann. 
653 |a Bohr effect. 
653 |a Bruce Mayer. 
653 |a Cell Signaling. 
653 |a Genes and Signals. 
653 |a MWC enzymes. 
653 |a Mark Ptashne. 
653 |a Michaelis-Menten Enzymes. 
653 |a Tony Pawson. 
653 |a Wendell Lim. 
653 |a allosterome. 
653 |a bacterial aerotaxis. 
653 |a cyclic nucleotide gated channels. 
653 |a enzyme phenomenology. 
653 |a gene expression. 
653 |a genome packing. 
653 |a glycolosis. 
653 |a ligand-receptor binding. 
653 |a logic gates. 
653 |a membrane receptors. 
653 |a nucleosomes. 
653 |a phoshofructokinase. 
653 |a signal transduction. 
776 0 8 |i Print version:  |a Phillips, Rob.  |t Molecular Switch : Signaling and Allostery.  |d Princeton : Princeton University Press, ©2020  |z 9780691200248 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvx5w8pf  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37414671 
938 |a De Gruyter  |b DEGR  |n 9780691200255 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195824 
938 |a EBSCOhost  |b EBSC  |n 2377008 
938 |a YBP Library Services  |b YANK  |n 16665712 
994 |a 92  |b IZTAP